Garmin Device Interface Specification

April 14, 2020
Drawing Number: 001-00063-00 Rev. G

Notice:

Garmin International, Inc. makes no warranties, express or implied, to companies or individuals accessing Garmin
International Inc.’s Device Interface, or any other person, with respect to the Device Interface, including without
limitation, any warranties of merchantability or fitness for a particular purpose, or arising from course of performance
or trade usage, all of which are hereby excluded and disclaimed by Garmin International, Inc.

Garmin International, Inc. shall not be liable for any indirect, incidental, consequential, punitive or special damages,
even if Garmin International, Inc. has been advised of the possibility of such damages. Some states may not allow the
exclusion on limitation of liability from consequential or incidental damages, so the foregoing limitation on liability for
damages may not apply to you.

Warning:

All companies and individuals accessing the Device Interface are advised to ensure the correctness of their Device
Interface software and to avoid the use of undocumented Device Interface features, particularly with respect to packet
ID, command ID, and packet data content. Any software implementation errors or use of undocumented features,
whether intentional or not, may result in damage to and/or unsafe operation of the device.

Technical Support Is Not Provided:

Garmin International, Inc. cannot provide technical support for questions relating to the Device Interface. However, if
you would like to comment on this document, or if you would like to report a document error, you may send email to
techsupp@garmin.com, or write to the address shown below.

Garmin Ltd. or its subsidiaries
c/o Garmin International, Inc.
1200 E. 151st St.
Olathe, Kansas USA 66062
(913) 397-8200

Copyright © 1998-2020 Garmin International, Inc.

Page ii 001-00063-00 Rev. G

1

Table of Contents

a1 oo [N Tox (o] OSSR UUPT 1
IS R @ V=T VT OO USSP 1
1.2 DEFINITION OF TEIMS ...ttt ettt sttt e bt e st e st et sb e e b e s beebe e s e e m e et saeebesbeebeeseenbeneesaeneas 1
1.3 SPECITICAtiON OF DAL TYPES. .. c.eiuiiieiiitiiteiet ittt b bbbt b e b et bt sb e eb e nb e ebene e st ebenn e e ebenreneas 1

(0] (Lot B I TSRS 1

PRYSICAI PIOTOCOISttt bbb bbb bbb bbb bbb b e bbb e bt bbb eeb b et b 1
K T0 A 1= g -1 I 0] (oot | SO RRR R P 1

3. L1 Serial PACKET FOIMALiiiieieiiiiei ettt ettt bbb be s et et st e be bt be e b e ene e e nne b e 2

K T0 0 T I (1) 1 1 o SO RSP S P 2

3.1.3 ACK/NAK HaNASNAKING.......cviieieiieiieiesiese st eeest et ste st e e sae st et steste s e e naesee s e teseesteseeenaesaensesnesseeees 2

3.1.4 Serial ProtOCOl PACKEL IDS.........cviiieiiiieiieie sttt sttt sttt bbb bbbt 2
KT U] = 0 o (0] (ool | OO PTORRR 3

32,1 USB ProtOCOI DELAIISeiviiiiiiieiieieie ittt bbbt b e bbbt bt e nn b e 3

3022 USB PACKEE FOIMAL........eiitiitiitiiietieit ettt bbbt e bbbt b e bt e s e e b et sb e eb e s bt e b e e b e e e e e nn e b e 3

3.2.3 USB ProtoCOl Layer PACKEL IUS.........ciiiiieiieiee sttt sttt e sne et e ntaesteeeeenaeannas 3

3.2.4 Garmin USB Driver for MiCroSOft WINUOWSc.ooueiiiiieiieiciee e st 4

LINK PROTOCOIS ...tttk h ettt bt bbb h e e bt bt e bt e b e e bt e hb e e et e e bt e bt eb e e bt enb e e b e b e 5
4.1 L0OOO — BASIC LINK PIOTOCOL......ccuiiuiiiieiieiie ettt bbbt se bbbt nn e e 5

411 BASIC PACKEL IDS ...t bbbttt bbbt bt b e b et b bt h ekt b e n e b b nre s 5
4.2 LOOL — LINK PIOTOCOI L.ttt bbbt b bbbkt b et et eb bbbt e b e e s e e b e e 5
4.3 L002 — LINK PIOTOCOI 2.ttt bttt b bbbttt sb ekt b e e bt e b et n b e b e 6

Overview Of APPHCALION PrOIOCOIS.iviiiiiitiiieiite ettt b ettt b e ebesre e 6
5.1 Undocumented APPLCAtION PACKELSccuiiiiiriiiitirieietc ettt 7
5.2 PACKET SEBOUBNCES......uteeieitieeteete ettt ettt ettt b bbb bbb bt b bR e bbb b e e bt e e bt e bbbt eb et b e b ettt 7
TR T o U0t = D v T I o1 USSR 7
5.4 Standard Beginning and ENAING PACKELSc.coviiiiii ittt sttt ste e 8

SRR R Tt £ L 1Y o 1= USSP SSRST 8
5.5 Device Overwriting of Identically-Named Data............cccoovviiiiiieiicciee e 8

APPLICALION PIOTOCOIS. ...ttt bbbt bbb bbb bbbt bbbt b bbbttt enes 8
LG TR A AN 00O I o To [0 Tod I L W (0 (oo o | S 8

B.1.1 PrOUUCT _DatA_ TYPE. . c.eiueieiiiteieeieite ettt ettt sttt sb ettt b ettt b e bbb bbb e e bt sb e e bt s b b et b e b e bt b e e e bt st e et b e 9

6.1.2 EXE_PrOQUCT DA TYPE ..ottt sttt b e bbb et b bbb bbb bbb e et b et be e 9
6.2 A00L — Protocol Capability ProtoCOl...........c.coiiiiiiiiie ettt et ae e ae e annas 9

LT R o o) (o Tol o] AN 1 Y/ 1Y/ LSO 10

I o) (o Tolo] I B T - W I/ o1 SRS 10

6.2.3 Tag Values for ProtoCOl_Data TYPE......ciiiiiiiiiiiiie sttt ettt te e te e ae e e e sreesaeenreenes 10

6.2.4 Protocol CapabilitieS EXAMPIEcoiiiieieeiie ettt ettt be e re e nreenre s 11
6.3 Device ComMMANG PrOtOCOISoouiiiiiiieieeiee et bbbt bbbt b e bbbt be e e nne e 11

6.3.1 AO010 — Device CommaNd PrOtOCOI L.......coiviieieiiie ettt ene e neenes 11

6.3.2 AO011 — Device Command PrOtOCOI 2........ocviieieriiieiesesesieeeeie st sie sttt see st e eneeneeneeeeseenes 12
6.4 AL100 — Waypoint Transfer PrOTOCOL.........ccoiiiiiiiii ettt 12
6.5 A101 - Waypoint Category Transfer PrOtOCOIcooiiiiiiiiiiiiie et 13
TG T = (o T C= N = TS (=T = (] (ool o | S 13

6.6.1 Database Matching for ROULE WAYPOINTS.ociiiiiiiiiiie it et 13

6.6.2 A200 — RoUte TranSFer PrOTOCOIcc.oiiiiiiiieiie et bbbt s 14

6.6.3 A201 — RoUte TranSFer PrOTOCOIcc.oiiiiiiiieieee et 14
6.7 Track Log Transfer PIOTOCOL........c..ooiiiiiiieee ettt b e bbbt e e nne e 15

6.7.1 Time Values IgNOred DY DEVICE........ccoii ittt bttt bbbt e e e e e 15

6.7.2 A300 — Track Log TranSfer PrOtOCOIouiioiiiiie ettt e 15

Page iii 001-00063-00 Rev. G

6.7.3 A301 — Track Log Transfer PrOtOCOIouiiiiiiiie ettt st s 16
6.7.4 A302 — Track Log Transfer PrOtOCOI ..ot 16
6.8 A400 — Proximity Waypoint Transfer ProtoCOl............cvciviiieiiiiii i 16
6.9 A500 — AIManac TranSTer PrOtOCOIuciiiiiiiieicie ettt st st bbbt nbe e 17
6.10 A600 — Date and Time Initialization ProtOCON..........ccoviiiiiiiiiiice et 17
6.11 AB650 — FlightBooK Transfer PrOTOCOIccvcieiiiiie ettt saenne e 18
6.12 A700 — Position INitialization PrOtOCOL..........uciiiiiiiiiie ettt 18
B.13 ABOO — PVT PIOOCON ...veviiieiiiteietiite ettt sttt bbbttt bbbt sttt b e ebenee e abenbe e 18
6.14 A906 — Lap Transfer PrOTOCOLcooiiiiiiiiiieic ettt ettt 19
6.15 AIL000 — RUN TranSfer PrOtOCOL.........cooiiiiiiee et ettt sttt seesne e 19
6.16 A1002 — WOrkout Transfer ProtOCOIovoueiiiiiiiieeeee et sttt sae e 20
6.17 A1004 — Fitness User Profile Transfer ProtOCOL.........ccuiiiiiieiiie e e 21
6.18 A1005 — Workout Limits Transfer PrOtOCOL.........cccoiiiiiiiiee e 21
6.19 AL006 — Course Transfer PrOTOCOLiiiiiieiiie sttt sttt seesne e 22
6.20 A1009 — Course Limits Transfer PrOtOCOL........ccciiiiiiiiii ettt st see e 23
6.21 A1051 — External Time Data SYNC PrOtOCOL.........cccviiiiieiieie e se sttt ne e nne e 23
DALA TYPES .ttt e nr e nr e 23
7.1 SErialiZation OF Data.......cccviiiiiiiiciccic ettt e st b e e s b e e be e beeabeebeeebeeebe e beerbeereesreesbeeabeebeenns 23
A O T (01]) TSROSO PP 24
7.3 BASIC DA TYPES ..eeiteietiiteieeteete ettt ettt ettt h b bbb st b e b s e bt e bRt bt e E e Rkt n bR e bt bRt b e bbb e b nr e 24
5 R v 1 - | SRS OSSP PRSP 24
A O 4T 1 Tor (= g AN 1 -\ OSSR 24
7.3.3 Variable-Length SIHNQSccveiic ettt e s et e be e te e tearaesreesreenreeneenes 25
T S Vo1 OSSOSO 25
4 T T V1 o1 OO 25
A T T V101 £ 7SSOSR 25
T A 1o 1 OSSOSO 25
R T 111 1 7SSOSR 25
FAC R T § [0 72T SO RPTOPRPPR 25
7.3.10 L1 0T LG T S SRS U U PO RO SUURPPRO 25
7.3.11 {01010] IS O SO O TSP PRRPRRRUROPROPPPP 25
7.3.12 POSTEION LY. .tttk bbbk bbb bbb bbb bbb 25
7.3.13 FAATAN_POSTHION _LYPB.. .t eieitiiteietit ettt bbb bbbt bbbt b et b e 26
7.3.14 LU LT LSS PSSR 26
7.3.15 VA0 010 I 8] oL USSR 26
7.4 ProduCt-SPECITIC DA TYPES ..c.vrevieieiiesiesiee sttt e sttt st s te et e et e e e st e s te e steesbeasteesseassesteebeesbeesaesseessaesreenteeneeanes 33
S R o 010 VAV o A 5/ oSO 34
A S o L0 VAV o R Y/ o1 OSSPSR 34
A T L0 VAV o R /o1 TSSO 34
TA4 DI03 WP TP ittt bbbt bt h et n bRt bR st n bRt E e bt 34
S T O X L0 T o1 G Y/ LT TSP PP PP UP PP 35
A I O L0 o1 S Y/ LT TS TP PP PSPPSR 35
TAT DI0B WP TP .ttt r bbb b et e bt e bt bt et s e e e s e b nn e bbbt nrens 36
A T O X (O T o1 G Y/ LT TSP PP PR UP ORI 36
A T o 0 < VAV o A 5/ o1 37
7.4.10 D0 T oL S 1Y oSO SSR 39
7.4.11 O oL 1Y oSO TSSTR 40
7.4.12 DN L0 oL S O N Y/ -SSR 41
7.4.13 DT O oL S 1Y o RSP SST R 41
7.4.14 D T oL S 1Y oSSR T SRR 42
7.4.15 DI52 WVPE TYPE ittt b e bbbt Rt bbb bRt 43
7.4.16 D54 WVPE TYPE ettt et R e R e e re e 43
TALT D155 WPE TYPE oottt s st en e en e en e en e esenee 44
7.4.18 D 0O S e o G I/ o OSSPSR 45
7.4.19 D20 S o G Y/ oSSR 45

Page iv 001-00063-00 Rev. G

8

7.4.20 D202 _REE _HAN Ty ettt bbb bbb et 45
7.4.21 D210 _REE_LINK _TYPE itttk b etk b bbbt b bbbt b e 45
7.4.22 D300 _TIK_POINE_TYPE ..ttt b e n et b et n et r e n e 46
7.4.23 D301 _TIK _POINE_TYPE ..ttt nn et b et nn et r e n e 46
7.4.24 D3B02_TIK _POINE_TYPE ..ttt r ettt b e n et r e 46
7.4.25 D303 _TTK _POINE_TYPE ..ttt b et r bbb nn et r e 46
7.4.26 D304 _TIK_POINE_TYPE ..ttt n et b et rer e 47
7.4.27 DBL0_TIK _HUN _TYPE .ttt b et nr e n et 47
7.4.28 D3LL TR HAT _TYPE ettt bbbt bbbt bbbt e 47
7.4.29 D312 TR HAI _TYPE ittt bbbt bbbt b et r e 47
7.4.30 D400 _PIX WP TP ettt 48
7.4.31 D403 _PIX VWP TY PR ettt 48
7.4.32 DAB0 _PIX VWP TY PR et 48
7.4.33 D500 _AIMENAC_TYP ..ottt ettt b ekt bbbt b bbbt eb e bbbt eb e b 49
7.4.34 [LT O A AN =TT o I3 o - USRS 49
7.4.35 (D LL A T o I3 o - SRS 49
7.4.36 (LN A AN =V Lo I/ o 1= SRR 50
7.4.37 DB00_Date TIME _TYPE touveiieiieeiieeieesteeiteete st e steesteesteesaessaesreesteesaeesseanseaseeassesteesseesseaseeaseesneesneenseenseanes 50
7.4.38 D650 _FlightBOOK _RECOII_TYPE...cviiiieie ettt ettt ettt e be e e ae s e e sraesaeenneenreenes 50
7.4.39 D700 _POSIION_TYPE 1iutieiieiiie sttt ettt s e st et e e st e st e s teesae e teeneeeseesseeste e beesbeestessaesreesaeeneeeneeanes 50
7.4.40 DBO0_PVL DA TYPE ..ttt bbbt bbb et bt nr s 51
7.4.41 D06 _LAP TP .ttt r et 52
7.4.42 D000 _RUN _TYPB. ittt ittt bbb s b bbbt b e e b b et b bt bt nnens 53
7.4.43 DA00L AP T8 ittt ittt r et ns 53
7.4.44 D1002_WOTKOUL TYPE ...ttt etttk bbbt b bbbt st 54
7.4.45 D1003_WOrKOUL OCCUITENCE TY PR eiuiieiieiieitieiteesteeiteeteseesiaesteesteesteete e s e sseestaesteesbeeseessaesseesaeenaeeseenes 55
7.4.46 D1004_Fitness_USEr _Profile _TYPE...cciii ettt ettt saeesneenre s 56
7.4.47 D1005_WOIKOUL LIMIES ..ot 56
7.4.48 (D00 0o TN] £ 1Y/ o[- PSP URTPPPPRT 57
7.4.49 (D00 oo TN <R =T o T)Y/ o[- PSP RPUPPTPT 57
7.4.50 D1008_WOTKOUL TYPE ...ttt ettt 57
7451 DI009 RUN _ Y. ittt ittt et bt r bbbt b e st e e e bbbt bt bt bt e e nennens 58
7.4.52 DI0L0 _RUN YR ittt ittt et b et b bRt s e b bt r e bbbt e nn s 59
7.4.53 [O I o 1Y/ o T TSP PR URPPPPTRPR 60
7.4.54 D1012_ COUISE_POINT_ TYPE. ..ttt ettt sttt b etk b etk bbbttt st 60
7.4.55 D1013 _COUrSE_LIMIS_ TYPE..euitiriitiitenietirteeic sttt bbb bbbt b ettt st 61
7.4.56 D1051_External_Time_SYNC_Data_ TYPEcccireriririiieirienieisies ettt 61
AN o] 0T a0 (=TSSP 63
8.1 DEVICE PrOUUCT IDS.. ...ttt ettt b et r et r e nn e b e nr et r e nn e anenr e b e nn e 63
8.2 Device ProtoCol Capabilitiescoiiiiiiiiiiieii bbbt e 64
8.3 Frequently ASKET QUESTIONSciiiiiiiti ettt b bbbt ettt sb et ebenb et eb e b e e et sbe e ebenrenea 68
8.3.1 Hexadecimal vs. DeCimal NUMDEIS ..ot 68
8.3.2 Length of ReCeiVed Data PACKELcoiriiiiiiiiieese bbb 68
8.3.3 WaypOint Creation DAL.........cceviiriiiiiitiieirte ettt bbbt bbb 68
8.3.4 AIMANnaC Data Par@MELEIScoviiiiiiiiiticirte ettt 68
8.3.5 EXAMPIE COOR ...ttt b bbbttt e et bbb e Rt Rt e Rt et ekt b b e b e bt ne et et nre e 68
8.3.6 Sample Data TranSTer DUMIPSc..ooiieieitirieeiieiee ettt b et b e st e e et e be b e ebesbeebe e e e nbe e sbeneas 68
8.3.7 AAAItIONAI TADIES ...ttt bbbt bt h et e b et b e b e b bt n et e e nre e 68
8.3.8 SOTEWAIE WEISIONS ...ttt bbbttt e e bbbt bt Rt et et et sbeeb e b e ebeebe et e eenbeneas 69

Page v 001-00063-00 Rev. G

Table of Tables

TaDIE 1 — PrOTOCOI LAYEIS ...ttt sttt b et bbbt bbb bt e b et eb e b s e e bt e b e s e ebenb e e ek e e b e e et e nne e 1
Table 2 — Serial PACKET FOMMALcoiiiiiiieiite ettt sttt bbbt sb et st e b b e s e ebesbe e ebesbe e ebenae e 2
Table 3 — USB PACKEL FOMMAL.........ciiieiiitiiieiiite ettt sttt b ettt st e e et e st e s e be s b e s e ebesbeseebesbe e ebenbe e 3
Table 4 — Data AVAIADIE PACKEL ..ottt b et e et b e e ebe b e e sbenbe e 4
Table 5 — Start SESSION PACKELc.viuiieiiitiieeiite ettt bbbttt sb et s b e s e ebe st e e ebesee e ebenae e 4
Table 6 — SESSION STArTEA PACKELoiviiiitiieice ettt b et bbb e ebe b e e ebenbe e 4
Table 7 — EXaMPIE PACKET SEQUENCEcuveiiieiie sttt st e sttt st e e e e besaeste e beens e e e tebestesteaneeneesne e eneees 7
Table 8 — Standard Beginning and ENAING PACKELScociiiiiiiiiiiieiieise ettt 8
Table 9 — AO0O Protocol Data Protocol PACKET SEQUENCEc.civeiiiiiiiiiierieieie ettt 9
Table 10 — A001 Protocol Capability Protocol PACKEt SEQUENCEcviueiiiiieieeie ettt 10
Table 11 — Protocol CapabilitieS EXAMPIE ..ottt 11
Table 12 — Device Command ProtoCol PACKEt SEQUENCEcoveiiiirieiieieiesie ettt 11
Table 13 — A100 Waypoint Transfer Protocol PaCket SEQUENCEccooiiiiiiieieiereeseee e 13
Table 14 — A101 Waypoint Category Transfer Protocol Packet SEQUENCE........cccccevvieieeieieee et 13
Table 15 — A200 Route Transfer ProtoCol PACKet SEQUENCEccviiuiiieiiiiecieeesies sttt snesre e nneas 14
Table 16 — A201 Route Transfer Protocol PACKet SEQUENCEcciviieiie et 14
Table 17 — A300 Track Log Transfer Protocol Packet SEQUENCEcciueiiieiie ittt te e e e 15
Table 18 — A301 Track Log Transfer Protocol Packet SEQUENCEccvviiieiie ettt 16
Table 19 — A400 Proximity Waypoint Transfer Protocol Packet SEQUENCEccvevveieeieiic e 16
Table 20 — A500 Almanac Transfer ProtoCol PACKEt SEQUENCE.........cvciiirieiieiee et 17
Table 21 — A600 Date and Time Initialization Protocol PaCket SEQUENCEcovverieiieriiiieieese e 18
Table 22 — A650 FlightBook Transfer Protocol Packet SEQUENCE...........coeiiiiiiiieieee e 18
Table 23 — A700 Position Initialization Protocol Packet SEQUENCEcoeiiiieiiieneee e 18
Table 24 — AB00 PVT ProtoCOI PACKEL SEQUENCEcutiterieiiite ettt sttt b ettt sbe e 19
Table 25 — A906 Lap Transfer ProtoCol PACKet SEQUENCE...........couiieiie e nne e 19
Table 26 — A1000 Run Transfer Protocol PaCKet SEQUENCEccvveieeie e ste e te e e e snaenneens 20
Table 27 — A1002 Workout TranSfer PrOtOCOL............ooi it 21
Table 28 — A1004 Fitness User Profile Transfer PrOTOCO]c.ooiiiiiiiiiiiciee st 21
Table 29 — A1005 Workout Limits Transfer ProtOCOLccooiiiiiiiiiiiiieieee et 22
Table 30 — A1006 Course Transfer PrOtOCOooiiiiiriiieie ettt sbesne 22
Table 31 — A1009 Course Limits Transfer PrOTOCO!ooviieiiise e sttt nne 23
Table 32 - A1051 External Time Data SYNC PrOtOCOL.cc.ciiiiiiiieieiie ettt 23
QI 1o] I EC R O F-V 1=] S =) £ USRS 24
Table 34 — D1002 WOrKOUL STEP DUFALIONcveieiiitiiieieite ettt bbb bbb et b e bbb bbb 55
Table 35 — D1002 WOIKOUL STEP TaIGELS.cueiueieiiiterieie ittt sttt bbb bbbt b ettt b et e et st 55
Table 36 — D1008 WOIKOUL STEP TaIGELS.cueiueieieite ettt bbbt b bbbttt b ettt st 58
Table 37 — Bit FIeld: PrOgram LY Pe . .cuee ittt ettt e a e et e et e st e e be e te e s beeseesseesteesteesbeenseaneeensesreenreens 59
TaDIE 38 — PrOUUCT IDS ...ttt bbb bbbt e bt b e bt bt e bt e a b et e nb e b s bt ebeebeene et e nbenbenbe 63
Table 39 — Device Protocol Capabilities........cc.viiiiiiiicicr e et sr e e b e e e b e nreesreens 65

Page vi 001-00063-00 Rev. G

1 Introduction
1.1 Overview

This document describes the Garmin Device Interface, which is used to communicate with a Garmin device. The
Device Interface supports bi-directional transfer of data such as waypoints, routes, track logs, proximity waypoints, and
satellite almanac. In the sections below, detailed descriptions of the interface protocols and data types are given, and
differences among Garmin devices are identified.

1.2 Definition of Terms

In this document, “device” means a Garmin-produced device, and “host” means the device communicating with the
Garmin-produced device. A host is usually a personal computer but is not required to be.

1.3 Specification of Data Types

All data types in this document are specified using the C programming language. Detailed specifications for basic C
data types, basic Garmin data types, and device-specific data types are found in section 07 on page 23. Data types
having limited scope are specified in earlier sections throughout this document (usually in the same section in which
they are introduced). Unless otherwise specified, the behavior of software upon receiving invalid data is undefined.

2 Protocol Layers
The protocols used in the Garmin Device Interface are arranged in the following three layers:

Table 1 — Protocol Layers

Protocol Layer
Application (highest)
Link

Physical (lowest)

The Physical layer is based on RS-232. The Link layer uses packets with minimal overhead. At the Application layer,
there are several protocols used to implement data transfers between a host and a device. These protocols are described
in more detail later in this document.

3 Physical Protocols
3.1 Serial Protocol

The Serial Protocol is based on RS-232. The voltage characteristics are compatible with most hosts; however, the
device transmits positive voltages only, whereas the RS-232 standard requires both positive and negative voltages.
Also, the voltage swing between mark and space may not be large enough to meet the strict requirements of the RS-232
standard. Still, the device voltage characteristics are compatible with most hosts as long as the interface cable is wired
correctly.

The other electrical characteristics are full duplex, serial data, 9600 baud, 8 data bits, no parity bits, and 1 stop bit.

The mechanical characteristics vary among devices; most devices have custom-designed interface connectors in order
to meet Garmin packaging requirements. The electrical and mechanical connections to standard DB-9 or DB-25
connectors can be accomplished with special cables that are available from Garmin.

Page 1 001-00063-00 Rev. G

3.1.1 Serial Packet Format

All data is transferred in byte-oriented packets. A packet contains a three-byte header (DLE, ID, and Size), followed by
a variable number of data bytes, followed by a three-byte trailer (Checksum, DLE, and ETX). The following table
shows the format of a packet:

Table 2 — Serial Packet Format

Byte Number | Byte Description Notes

0 Data Link Escape ASCII DLE character (16 decimal)

1 Packet ID identifies the type of packet

2 Size of Packet Data | number of bytes of packet data (bytes 3 to n-4)

3ton-4 Packet Data 0 to 255 bytes

n-3 Checksum 2's complement of the sum of all bytes from byte 1 to byte n-4
n-2 Data Link Escape ASCII DLE character (16 decimal)

n-1 End of Text ASCII ETX character (3 decimal)

3.1.2 DLE Stuffing

If any byte in the Size, Packet Data, or Checksum fields is equal to DLE, then a second DLE is inserted immediately
following the byte. This extra DLE is not included in the size or checksum calculation. This procedure allows the DLE
character to be used to delimit the boundaries of a packet.

3.1.3 ACK/NAK Handshaking

Unless otherwise noted in this document, a device that receives a data packet must send an ACK or NAK packet to the
transmitting device to indicate whether or not the data packet was successfully received. Normally, the transmitting
device does not send any additional packets until an ACK or NAK is received (this is sometimes referred to as a “stop
and wait” protocol).

The ACK packet has a Packet ID equal to 6 decimal (the ASCII ACK character), while the NAK packet has a Packet
ID equal to 21 decimal (the ASCII NAK character). Both ACK and NAK packets contain an 8-bit integer in their
packet data to indicate the Packet ID of the acknowledged packet. Note: some devices will report a Packet Data Size of
two bytes for ACK and NAK packets; however, only the first byte should be considered. Note: Some devices may
work sporadically if only one byte ACK/NAK packets are sent. The host should send two byte ACK/NAK packets to
ensure consistency.

If an ACK packet is received, the data packet was received correctly and communication may continue. If a NAK
packet is received, the data packet was not received correctly and should be sent again. NAKSs are used only to indicate
errors in the communications link, not errors in any higher-layer protocol. For example, consider the following higher-
layer protocol error: a Pid_Wpt_Data packet was expected by the device, but a valid Pid_Xfer_Cmplt packet was
received instead. This higher-layer protocol error does not cause the device to generate a NAK.

Some devices may send NAK packets during communication timeout conditions. For example, when the device is
waiting for a packet in the middle of a protocol sequence, it will periodically send NAK packets (typically every 2-5
seconds) if no data is received from the host. The purpose of this NAK Packet is to guard against a deadlock condition
in which the host is waiting for an ACK or NAK in response to a data packet that was never received by the device
(perhaps due to cable disconnection during the middle of a protocol sequence). Not all devices provide NAKSs during
timeout conditions, so the host should not rely on this behavior. It is recommended that the host implement its own
timeout and retransmission strategy to guard against deadlock. For example, if the host does not receive an ACK within
a reasonable amount of time, it could warn the user and give the option of aborting or re-initiating the transfer.

3.1.4 Serial Protocol Packet IDs

The Serial Protocol Packet ID values are defined using the enumerations shown below:

Page 2 001-00063-00 Rev. G

enum
{
Pid Ack Byte
Pid Nak Byte
b

Additional Packet IDs are defined by other Link protocols (see below); however, the values of ASCII DLE (16 decimal)
and ASCII ETX (3 decimal) are reserved and will never be used as Packet IDs in any Link protocol. This allows more
efficient detection of packet boundaries in the link-layer software implementation.

3.2 USB Protocol
This protocol provides a mechanism for using the link and application layer protocols over USB.
3.2.1 USB Protocol Details

Microsoft Windows application developers do not need to be familiar with the concepts in this section in order to use
the USB protocol.

The host always transmits to the device over the Bulk OUT pipe.

The device can choose to transmit to the host over either the Interrupt IN pipe or the Bulk IN pipe. Once the device
begins an application protocol over a particular pipe, the device will complete the protocol over that same pipe. Some
devices may transmit data to the host only using the Interrupt IN pipe.

The host must constantly check the interrupt pipe for data. The host only reads the bulk pipe when it receives a Data
Available packet from the device (see section 3.2.3.1 below). Once the host begins reading the bulk pipe, it should keep
reading packets until it receives a zero length transfer (i.e. USB transfer, not a Garmin packet.)

3.2.2 USB Packet Format
All packets transferred using this protocol have the following format:

Table 3 — USB Packet Format

Byte Number | Byte Description | Notes

0 Packet Type USB Protocol Layer = 0, Application Layer = 20
1-3 Reserved Must be set to 0

4-5 Packet ID

6-7 Reserved Must be set to 0

8-11 Data Size

12+ Data

3.2.3 USB Protocol Layer Packet Ids

The USB Protocol Packet ID values are defined using the enumerations shown below:

enum
{
Pid Data Available =2,
Pid Start Session =5,
Pid Session Started =6

b
3.2.3.1 Data Available Packet

The Data Available packet signifies that data has become available for the host to read. The host should read data until
receiving a transfer with no data (zero length). No data is associated with this packet.

Page 3 001-00063-00 Rev. G

Table 4 — Data Available Packet

N | Direction Packet ID Packet Data Type
0 | Device to Host | Pid Data Available | n/a

3.2.3.2 Start Session Packet

The Start Session packet must be sent by the host to begin transferring packets over USB. It must also be sent anytime
the host deliberately stops transferring packets continuously over USB and wishes to begin again. No data is associated
with this packet.

Table 5 — Start Session Packet

N | Direction Packet ID Packet Data Type
0 | Host to Device | Pid Start Session | n/a

3.2.3.3 Session Started Packet

The Session Started packet indicates that transfers can take place to and from the device. The host should ignore any
packets it receives before receiving this packet. The data returned with this packet is the device’s unit ID.

Table 6 — Session Started Packet

N | Direction Packet ID Packet Data Type
0 | Device to Host | Pid Session Started | uint32

3.2.4 Garmin USB Driver for Microsoft Windows

This section provides information related to the use of the Garmin-provided USB driver for use on Microsoft Windows
operating systems. This driver is compatible with Windows 98, ME, 2000 and XP. It is assumed that the reader is
familiar with programming for the Windows Platform Software Development Kit and Driver Development Kit.

Applications send packets to the device using the Win32 WriteFile function. If the packet size is an exact multiple of
the USB packet size, an additional call to WriteFile should be made passing in no data.

Applications receive packets asynchronously from the device by constantly calling the Win32 DeviceloControl
function. When an application receives a Data Available packet, it should read packets using the Win32 ReadFile
function. Once an application begins receiving packets for a protocol using DeviceloControl or ReadFile, all
subsequent packets for that protocol will be received using the same function.

3.2.4.1 Device Interface GUID

// {2C9C45C2-8E7D-4C08-A12D-816BBAE722C0}

DEFINE GUID(GUID DEVINTERFACE GRMNUSB, 0x2c9c45c2L, 0x8e7d, 0x4c08, Oxal, 0x2d, 0x81,
Ox6b, Oxba, O0xe7, 0x22, 0xcO0);

3.24.2 Constants

#define API VERSION 1
#define MAX BUFFER SIZE 4096
#define ASYNC DATA SIZE 64
3.2.4.3 ReadFile, WriteFile Functions

The buffer passed in by the client to ReadFile or WriteFile must be no larger than MAX BUFFER SIZE. If data
exceeds MAX BUFFER_SIZE, multiple calls must be made.

Page 4 001-00063-00 Rev. G

3.2.4.4 10CTLS

The following constants are intended for use with the DeviceloControl function. For each IOCTL below, the return
value is the number of bytes written to the output buffer.

#define IOCTL API VERSION CTL CODE(FILE DEVICE UNKNOWN, 0x800, METHOD BUFFERED,
FILE ANY ACCESS)

Output buffer receives 4-byte API version.

#define IOCTL ASYNC IN CTL CODE(FILE DEVICE UNKNOWN, 0x850, METHOD BUFFERED,
FILE ANY ACCESS)

Output buffer receives asynchronous data from the device. Size is equal to or less than ASYNC DATA SIZE. The
client should constantly have a call into the driver with this IOCTL. The driver stores a limited amount of
asynchronous data.

#define IOCTL USB PACKET SIZE CTL CODE(FILE DEVICE UNKNOWN, 0x851, METHOD BUFFERED,
FILE ANY ACCESS)

Output buffer receives 4-byte USB packet size. Client is responsible for sending a zero length transfer if the amount of
data sent to the device is an integral multiple of the USB packet size.

4 Link Protocols
4.1 LOO0O0 - Basic Link Protocol

All devices implement the Basic Link Protocol. Its primary purpose is to facilitate initial communication between the
host and the device using the Product Data Protocol (see section 6.1 on page 8), which allows the host to determine
which type of device is connected. Using this knowledge, the host can then determine which device-specific Link
protocol to use for all other communication with the device.

4.1.1 Basic Packet IDs

The Basic Packet ID values are defined using the enumerations shown below:

enum
{
Pid Protocol Array = 253, /* may not be implemented in all devices */
Pid Product Rgst = 254,
Pid Product Data = 255,
Pid Ext Product Data = 248 /* may not be implemented in all devices */

b7
4.2 LOO1-Link Protocol 1

This Link protocol is used for the majority of devices (see section 8.2 on page 64). This protocol is the same as L000 —
Basic Link Protocol, except that the following Packet IDs are used in addition to the Basic Packet IDs:

Page 5 001-00063-00 Rev. G

enum

{

Pid Command Data = 10,
Pid Xfer Cmplt = 12,
Pid Date Time Data = 14,
Pid Position Data = 17,
Pid Prx Wpt Data = 19,
Pid Records = 27,
Pid Rte Hdr = 29,
Pid Rte Wpt Data = 30,
Pid Almanac Data = 31,
Pid Trk Data = 34,
Pid Wpt Data = 35,
Pid Pvt Data = 51,
Pid Rte Link Data = 98,
Pid Trk Hdr = 99,
Pid FlightBook Record = 134,
Pid Lap = 149,
Pid Wpt Cat = 152,
Pid Run = 990,
Pid Workout = 991,
Pid Workout Occurrence = 992,

Pid Fitness User Profile = 993,

Pid Workout Limits = 994,
Pid Course = 1061,
Pid Course Lap = 1062,
Pid Course Point = 1063,
Pid Course Trk Hdr = 1064,
Pid Course Trk Data = 1065,
Pid Course Limits = 106606,
Pid External Time Sync Data = 6724

i
4.3 L002 - Link Protocol 2

This Link protocol is used mainly for panel-mounted aviation devices (see section 8.2 on page 64). This protocol is the
same as L0O00 — Basic Link Protocol, except that the following Packet IDs are used in addition to the Basic Packet IDs:

enum
{
Pid Almanac Data = 4,
Pid Command Data =11,
Pid Xfer Cmplt =12,

Pid Date Time Data = 20,
Pid Position Data 24,
Pid Prx Wpt Data 27,
Pid Records = 35,

Pid Rte Hdr = 37,
Pid Rte Wpt Data = 39,
Pid Wpt Data = 43

i
5 Overview of Application Protocols

Each Application protocol has a unique Protocol ID to allow it to be identified apart from the others. Future devices
may introduce additional protocols to transfer new data types or to provide a newer version of an existing protocol (e.g.,
protocol A101 might be introduced as a newer version of protocol A100). Whenever a new protocol is introduced, it is
expected that the host software will have to be updated to accommodate the new protocol. However, new devices may
continue to support some of the older protocols, so full or partial communication may still be possible with older host
software. To better support this capability, newer devices are able to report which protocols they support (see section
6.2 on page 9). In all other cases, the host must contain a lookup table to determine which protocols to use with which
device types (see section 8.2 on page 64).

Page 6 001-00063-00 Rev. G

5.1 Undocumented Application Packets

A device may transmit application packets containing packet IDs that are not documented in this specification. These
packets are used for internal testing purposes by Garmin engineering. Their contents are subject to change at any time
and should not be used by third-party applications for any purpose. They should be handled according to the physical
protocols described in this specification and then discarded.

5.2 Packet Sequences

Each of the Application protocols is defined in terms of a packet sequence, which defines the order and types of
packets exchanged between two devices, including direction of the packet, Packet ID, and packet data type. An
example of a packet sequence is shown below:

Table 7 — Example Packet Sequence

Direction Packet ID | Packet Data Type
Devicel to Device2 | Pid_First First Data Type
Devicel to Device2 | Pid Second | ignored

Devicel to Device2 | Pid_Third <D0>

Device2 to Devicel | Pid Fourth | <D1>

Device2 to Devicel | Pid Fifth <D2>

AlwN|k|o|z

In this example, there are five packets exchanged: three from Devicel to Device2 and two in the other direction. Each
of these five packets must be acknowledged, but the acknowledgement packets are omitted from the table for clarity.

Most of the protocols are symmetric, meaning that the protocol for transfers in one direction (e.g., Device to Host) is

the same as the protocol for transfers in the other direction (e.g., Host to Device). For symmetric protocols, either the

device or the host may assume the role of Devicel or Device2. For non-symmetric protocols, the sequence table will

explicitly show the roles of the device and host instead of showing Devicel and Device2.

The first column of the table shows the packet number (used only for reference; this number is not encoded into the
packet). The second column shows the direction of each packet transfer. The third column shows the Packet ID
enumeration name (to determine the actual value for a Packet ID, see section 3.2.3 on page 3). The last column shows
the Packet Data Type.

5.3 Packet Data Types

The Packet Data Type may be specified in several different ways. First, it may be specified with an explicitly-named
data type (e.g., “First Data_Type”); all explicitly-named data types are defined in this document. Second, it may
indicate that the packet data is not used (e.g., “ignored”), in which case the packet data may have a zero size. Finally,
the data type for a packet may be specified using angle-bracket notation (e.g. <D0>). This notation indicates that the
data type is device-specific. In the example above, there are three device-specific data types (<D0>, <D1>, and <D2>).

These device-specific data types must be determined dynamically by the host depending on which type of device is
currently connected. For older devices, this determination is made through the use of a lookup table within the host (see
section 8.2 on page 64), however, newer devices are able to dynamically report their protocols and data types (see
section 6.2 on page 9).

Page 7 001-00063-00 Rev. G

5.4 Standard Beginning and Ending Packets

Many Application protocols use standard beginning and ending packets called Pid_Records and Pid_Xfer_Cmplt,
respectively, as shown in the table below:

Table 8 — Standard Beginning and Ending Packets

N Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid _Records Records_Type

n-1 | Devicel to Device2 | Pid Xfer Cmplt | Command Id Type

The first packet (Packet 0) provides Device2 with an indication of the number of data packets to follow, excluding the
Pid_Xfer_Cmplt packet (i.e., Packet 1 through n-2). This allows Device2 to monitor the progress of the transfer. The
last packet (Packet n-1) indicates that the transfer is complete. This last packet also contains data to indicate which kind
of transfer has been completed in the Command_Id_Type data type (see section 6.3 on page 11).

The Command_ld_Type value for each kind of transfer matches the command ID used to initiate that kind of transfer
(see section 6.3 on page 11). As a result, the actual Command_Id_Type value depends on which Device Command
protocol is implemented by the device. Because of this dependency, enumeration names (not values) for
Command_Id_Type are given in the description of each Application protocol later in this document.

5.4.1 Records_Type

The Records_Type contains a 16-bit integer that indicates the number of data packets to follow, excluding the
Pid_Xfer_Cmplt packet. The type definition for the Records_Type is shown below:

typedef uintl6 Records Type;
5.5 Device Overwriting of Identically-Named Data

When receiving data from the host, some devices will erase identically-named data and replace it with the new data
received from the host. For example, if the host sends a waypoint named XYZ, these devices will overwrite the
waypoint named XYZ that was previously stored in device memory. No warning is sent from the device prior to
overwriting identically-named data.

Other devices have special handling for identically-named waypoints. These devices may compare the position of the
incoming waypoint with the position of the existing waypoint, for instance (Note: altitude is ignored during the
comparison). If the positions match, the device will erase the identically-named waypoint and replace it with the new
waypoint received from the host. If the positions differ, the device will create a new, unique name for the incoming
waypoint and preserve the existing waypoint under the original name. There is no mechanism available for the host to
determine which method a device uses for waypoints (overwriting vs. unique naming).

6 Application Protocols
6.1 A000 - Product Data Protocol

All devices are required to implement the Product Data Protocol using the default physical and basic link protocols
described earlier in this document. The Product Data Protocol is used to query the device to find out its Product ID,
which is then used by the host to determine which data transfer protocols are supported by the connected device (see
section 8.2 on page 64).

Page 8 001-00063-00 Rev. G

The packet sequence for the Product Data Protocol is shown below:

Table 9 — A000 Protocol Data Protocol Packet Sequence

N Direction Packet ID Packet Data Type

0 Host to Device | Pid Product Rgst ignored

1 Device to Host | Pid Product Data Product Data Type

2 Device to Host | Pid Ext Product Data | Ext Product Data Type

N-1 | Device to Host | Pid Ext Product Data | Ext Product Data Type

Packet O (Pid_Product_Rqst) is a special product request packet that is sent to the device. Packet 1 (Pid_Product_Data)
is returned to the host and contains data to identify the device, which is provided in the data type Product_Data_Type.
Packets 2 (Pid_Ext_Product_Data) through N-1 (Pid_Ext_Product_Data) are not implemented by all devices and
contain additional information about the device as provided in the data type Ext_Product_Data_Type.

6.1.1 Product_Data Type

The Product_Data_Type contains two 16-bit integers followed by one or more null-terminated strings. The first integer
indicates the Product 1D, and the second integer indicates the software version number multiplied by 100 (e.qg., version
3.11 will be indicated by 311 decimal). Following these integers, there will be one or more null-terminated strings. The
first string provides a textual description of the device and its software version; this string is intended to be displayed
by the host to the user in an “about” dialog box. The host should ignore all subsequent strings; they are used during
manufacturing to identify other properties of the device and are not formatted for display to the end user.

The type definition for the Product_Data_Type is shown below:

typedef struct
{

uintl6 product ID;

sintl6 software version;
/* char product description[]; null-terminated string */
/* .. zero or more additional null-terminated strings */

} Product Data Type;
6.1.2 Ext_Product_Data Type

The Ext_Product_Data_Type contains zero or more null-terminated strings. The host should ignore all these strings;
they are used during manufacturing to identify other properties of the device and are not formatted for display to the
end user.

typedef struct
{
/¥

.. zero or more additional null-terminated strings */
} Ext Product Data Type;

6.2 A001 - Protocol Capability Protocol

The Protocol Capability Protocol is a one-way protocol that allows a device to report its protocol capabilities and
device-specific data types to the host. When this protocol is supported by the device, it is automatically initiated by the
device immediately after completion of the Product Data Protocol. Using this protocol, the host obtains a list of all
protocols and data types supported by the device.

Page 9 001-00063-00 Rev. G

The packet sequence for the Protocol Capability Protocol is shown below:

Table 10 — A001 Protocol Capability Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 | Device to Host | Pid Protocol Array | Protocol Array Type

Packet O (Pid_Protocol_Array) contains an array of Protocol_Data_Type structures, each of which contains tag-
encoded protocol information.

The order of array elements is used to associate data types with protocols. For example, a protocol that requires two
data types <D0> and <D1> is indicated by a tag-encoded protocol ID followed by two tag-encoded data type IDs,
where the first data type ID identifies <D0> and the second data type ID identifies <D1>.

6.2.1 Protocol_Array_Type
The Protocol_Array_Type is an array of Protocol_Data_Type structures. The number of Protocol_Data_Type

structures contained in the array is determined by observing the size of the received packet data.
typedef Protocol Data Type Protocol Array Typel];

6.2.2 Protocol_Data Type

The Protocol_Data_Type is comprised of a one-byte tag field and a two-byte data field. The tag identifies which kind
of ID is contained in the data field, and the data field contains the actual I1D.

typedef struct
{
uint8 tag;
uintlo data;
} Protocol Data Type;

The combination of tag value and data value must correspond to one of the protocols or data types specified in this
document. For example, this document specifies a Waypoint Transfer Protocol identified as “A100.” This protocol is
represented by a tag value of ‘A’ and a data field value of 100.

6.2.3 Tag Values for Protocol_Data_Type

The enumerated values for the tag member of the Protocol_Data_Type are shown below. The characters shown are
translated to numeric values using the ASCII character set.

enum
{
Tag_ Phys Prot Id = ‘p’, /* tag for Physical protocol ID */
Tag Link Prot Id = ‘L', /* tag for Link protocol ID */
Tag Appl Prot Id = ‘A7, /* tag for Application protocol ID */
Tag Data Type Id = ‘D’ /* tag for Data Type ID */

i

Page 10 001-00063-00 Rev. G

6.2.4 Protocol Capabilities Example

The following table shows a series of three-byte records that might be received by a host during the Protocol
Capabilities Protocol:

Table 11 — Protocol Capabilities Example

Tag (byte 0) | Data (bytes 1 & 2) | Notes

L 1 Device supports Link Protocol 1 (L001)

‘Al 10 Device supports Device Command Protocol 1 (A010)

‘A’ 100 Device supports the Waypoint Transfer Protocol (A100)

'D' 100 Device uses Data Type D100 for <DO> during waypoint transfer
‘Al 200 Device supports the Route Transfer Protocol (A200)

'D' 200 Device uses Data Type D200 for <D0> during route transfer

'D' 100 Device uses Data Type D100 for <D1> during route transfer

‘Al 300 Device supports the Track Log Transfer Protocol (A300)

‘D' 300 Device uses Data Type D300 for <DO> during track log transfer
‘Al 500 Device supports the Almanac Transfer Protocol (A500)

‘D' 500 Device uses Data Type D500 for <D0> during almanac transfer

The device omits the following protocols from the above transmission:

A000 — Product Data Protocol
A001 — Protocol Capability Protocol

A000 is omitted because all devices support it. AO01 is omitted because it is the very protocol being used to
communicate the protocol information.

6.3 Device Command Protocols

This section describes a group of similar protocols known as Device Command protocols. These protocols are used to
send commands to a device; for example, the host might command the device to transmit its waypoints. All devices are
required to implement one of the Device Command protocols, although some commands may not be implemented by
the device (reception of an unimplemented command causes no error in the device; it simply ignores the command).
The only difference among Device Command protocols is that the enumerated values for the Command_Id_Type are
different (see the section for each Device Command protocol below).

Note that either the host or device is allowed to initiate a transfer without a command from the other device (for
example, when the host transfers data to the device, or when the user presses buttons on the device to initiate a transfer).

The packet sequence for each Device Command protocol is shown below:

Table 12 — Device Command Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 | Devicel to Device2 | Pid Command Data | Command Id Type

Packet 0 (Pid_Command_Data) contains data to indicate a command, which is provided in the data type
Command_Id_Type. The Command_ld_Type contains a 16-bit integer that indicates a particular command. The type
definition for Command_ld_Type is shown below:

typedef uintl6 Command Id Type;
6.3.1 AO010 - Device Command Protocol 1

This protocol is implemented by the majority of devices (see section 8.2 on page 64). The enumerated values for
Command_Id_Type are shown below:

Page 11 001-00063-00 Rev. G

enum

{

Cmnd_ Abort Transfer = , /* abort current transfer */
Cmnd_Transfer Alm = , /* transfer almanac */
Cmnd Transfer Posn = , /* transfer position */

Cmnd Transfer Prx /* transfer proximity waypoints */

Il
o W N O
~

Cmnd Transfer Rte = , /* transfer routes */
Cmnd_Transfer Time = , /* transfer time */

Cmnd Transfer Trk = , /* transfer track log */

Cmnd Transfer Wpt = , /* transfer waypoints */

Cmnd Turn Off Pwr = 8, /* turn off power */

Cmnd_Start Pvt Data = 49, /* start transmitting PVT data */
Cmnd_Stop_ Pvt Data = 50, /* stop transmitting PVT data */
Cmnd FlightBook Transfer = 92, /* transfer flight records */

Cmnd_Transfer Laps 117, /* transfer fitness laps */

Cmnd Transfer Wpt Cats 121, /* transfer waypoint categories */
Cmnd_Transfer Runs = 450, /* transfer fitness runs */

Cmnd Transfer Workouts = 451, /* transfer workouts */

Cmnd Transfer Workout Occurrences 452, /* transfer workout occurrences */
Cmnd Transfer Fitness User Profile 453, /* transfer fitness user profile */
Cmnd Transfer Workout Limits 454, /* transfer workout limits */

Cmnd Transfer Courses 561, /* transfer fitness courses */

Cmnd Transfer Course Laps = 562, /* transfer fitness course laps */
Cmnd Transfer Course Points 563, /* transfer fitness course points */
Cmnd Transfer Course Tracks 564, /* transfer fitness course tracks */
Cmnd Transfer Course Limits = 565 /* transfer fitness course limits */

b

Note: The “Cmnd_Turn_Off Pwr” command may not be acknowledged by the device.

Note: The PC can send Cmnd_Abort_Transfer in the middle of a transfer of data to the device in order to cancel the
transfer.

6.3.2 AO011 - Device Command Protocol 2

This protocol is implemented mainly by panel-mounted aviation devices (see section 8.2 on page 64). The enumerated
values for Command_ld_Type are shown below:

enum
{
Cmnd Abort Transfer = 0, /* abort current transfer */
Cmnd_Transfer Alm = 4, /* transfer almanac */
Cmnd Transfer Rte = 8, /* transfer routes */
Cmnd_Transfer Prx =17, /* transfer proximity waypoints */
Cmnd_Transfer Time = 20, /* transfer time */
Cmnd_Transfer Wpt = 21, /* transfer waypoints */
Cmnd Turn Off Pwr = 26 /* turn off power */

}i
6.4 A100 - Waypoint Transfer Protocol

The Waypoint Transfer Protocol is used to transfer waypoints between devices. When the host commands the device to
send waypoints, the device will send every waypoint stored in its database. When the host sends waypoints to the
device, the host may selectively transfer any waypoint it chooses.

Page 12 001-00063-00 Rev. G

The packet sequence for the Waypoint Transfer Protocol is shown below:

Table 13 — A100 Waypoint Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type
1
2

Devicel to Device2 | Pid Wpt Data | <D0>
Devicel to Device2 | Pid Wpt Data | <D0>

n-2 | Devicel to Device2 | Pid Wpt Data | <D0>
n-1 | Devicel to Device2 | Pid Xfer Cmplt | Command Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Wpt, which is also the command
value used by the host to initiate a transfer of waypoints from the device.

Packets 1 through n-2 (Pid_Wpt_Data) each contain data for one waypoint, which is provided in device-specific data
type <D0>. This data type usually contains an identifier string, latitude and longitude, and other device-specific data.

6.5 A101 - Waypoint Category Transfer Protocol

The Waypoint Category Transfer Protocol is used to transfer waypoint categories between devices. When a device is
commanded to send waypoint categories, the device will send every waypoint category stored in its database.

The packet sequence for the Waypoint Category Transfer Protocol is shown below:

Table 14 — A101 Waypoint Category Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type
1 Devicel to Device2 | Pid Wpt Cat <D0>
2 Devicel to Device2 | Pid Wpt Cat <D0>

n-2 | Devicel to Device2 | Pid_ Wpt_Cat <D0>
n-1 | Devicel to Device2 | Pid_Xfer_Cmplt | Command_Id_Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Wpt_Cats, which is also the
command value used by the host to initiate a transfer of waypoint categories from the device.

Packets 1 through n-2 (Pid_Wpt_Cat) each contain data for one waypoint category, which is provided in device-
specific data type <D0>. The order of packets 1 through n-2 indicates the association of the data received with a
particular category. For example, packet 1 contains data associated with category 1, packet 3 is associated with
category 3, etc. Each device will be capable of containing some maximum number of waypoint categories. If a device
receives more data packets than its maximum then it should ignore those data packets beyond its maximum.

6.6 Route Transfer Protocol

The Route Transfer Protocol is used to transfer routes between devices. When the host commands the device to send
routes, the device will send every route stored in its database. When the host sends routes to the device, the host may
selectively transfer any route it chooses.

6.6.1 Database Matching for Route Waypoints

Certain devices contain an internal database of waypoint information; for example, most aviation devices have an
internal database of aviation waypoints, and the StreetPilot has an internal database of land waypoints. When routes are
being transferred from the host to one of these devices, the device will attempt to match the incoming route waypoints
with waypoints in its internal database. First, the device inspects the “wpt_class” member of the incoming route

Page 13 001-00063-00 Rev. G

waypoint; if it indicates a non-user waypoint, then the device searches its internal database using values contained in
other members of the route waypoint. For aviation devices, the “ident” and “cc” members are used to search the
internal database; for the StreetPilot, the “subclass” member is used to search the internal database. If a match is found,
the waypoint from the internal database is used for the route; otherwise, a new user waypoint is created and used for the
route.

6.6.2 A200 - Route Transfer Protocol
The packet sequence for the A200 Route Transfer Protocol is shown below:

Table 15 — A200 Route Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type

1 Devicel to Device2 | Pid Rte Hdr <D0>

2 Devicel to Device2 | Pid Rte Wpt Data | <D1>

3 Devicel to Device2 | Pid Rte Wpt Data | <D1>

n-2 | Devicel to Device2 | Pid Rte Wpt Data | <D1>

n-1 | Devicel to Device2 | Pid Xfer Cmplt Command_Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Rte, which is also the command
value used by the host to initiate a transfer of routes from the device.

Packet 1 (Pid_Rte_Hdr) contains route header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the route. Packets 2 through n-2 (Pid_Rte_Wpt_Data)
each contain data for one route waypoint, which is provided in device-specific data type <D1>. This data type usually
contains the same waypoint data that is transferred in the Waypoint Transfer Protocol.

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1
through n-2 in the table above. This additional set of packets is sent immediately after the previous set of route packets.
In other words, it is not necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the multiple routes.
Device2 must monitor the Packet ID to detect the beginning of a new route, which is indicated by a Packet ID equal to
Pid_Rte_Hdr. Any number of routes may be transferred in this fashion.

6.6.3 A201 - Route Transfer Protocol
The packet sequence for the A201 Route Transfer Protocol is shown below:

Table 16 — A201 Route Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type

1 Devicel to Device2 | Pid Rte Hdr <D0>

2 Devicel to Device2 | Pid_Rte Wpt Data | <D1>

3 Devicel to Device2 | Pid Rte Link Data | <D2>

4 Devicel to Device2 | Pid_Rte Wpt Data | <D1>

5 Devicel to Device2 | Pid Rte Link Data | <D2>

n-2 | Devicel to Device2 | Pid_Rte Wpt Data | <D1>

n-1 | Devicel to Device2 | Pid Xfer Cmplt Command _Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Rte, which is also the command
value used by the host to initiate a transfer of routes from the device.

Page 14 001-00063-00 Rev. G

Packet 1 (Pid_Rte_Hdr) contains route header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the route. Even numbered packets starting with packet 2
contain data for one route waypoint, which is provided in device-specific data type <D1>. Odd numbered packets
starting with packet 3 and excluding packet n-1 (Pid_Xfer_Cmplt) contain data for one link between the adjacent
waypoints. This link data is provided in device-specific data type <D2>.

More than one route can be transferred during the protocol by sending another set of packets that resemble Packets 1
through n-2 in the table above. This additional set of packets is sent immediately after the previous set of route packets.
In other words, it is not necessary to send Pid_Xfer_Cmplt until all route packets have been sent for the multiple routes.
Device2 must monitor the Packet ID to detect the beginning of a new route, which is indicated by a Packet 1D equal to
Pid_Rte_Hdr. Any number of routes may be transferred in this fashion.

6.7 Track Log Transfer Protocol
6.7.1 Time Values Ignored by Device

When the host transfers a track log to the device, the device ignores the incoming time value for each track log point
and sets the time value to zero in its internal database. If the device later transfers the track log back to the host, the
time values will be zero. Thus, the host is able to differentiate between track logs that were actually recorded by the
device and track logs that were transferred to the device by an external host.

NOTE: Some devices use Ox7FFFFFFF or OXFFFFFFFF instead of zero to indicate an invalid time value.
6.7.2 A300 - Track Log Transfer Protocol

The Track Log Transfer Protocol is used to transfer track logs between devices. Some devices store only one track log
(called the “active” track log), however, other devices can store multiple track logs (in addition to the active track log).
When the host commands the device to send track logs, the device will concatenate all track logs (i.e., the active track
log plus any stored track logs) to form one track log consisting of multiple segments; i.e., the protocol does not provide
a way for the host to request selective track logs from the device, nor is there a way for the host to decompose the
concatenated track log into its original set of track logs. When the host sends track logs to the device, the track log is
always stored in the active track log within the device; i.e., there is no way to transfer track logs into the database of
stored track logs. None of these limitations affect devices that store only one track log.

The packet sequence for the Track Log Transfer Protocol is shown below:

Table 17 — A300 Track Log Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid_Records Records_Type
1
2

Devicel to Device2 | Pid Trk Data <D0>
Devicel to Device2 | Pid Trk Data <D0>

n-2 | Devicel to Device2 | Pid Trk Data <D0>
n-1 | Devicel to Device2 | Pid_Xfer_Cmplt | Command_Id_Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Trk, which is also the command
value used by the host to initiate a transfer of track logs from the device.

Packets 1 through n-2 (Pid_Trk_Data) each contain data for one track log point, which is provided in device-specific
data type <DO0>. This data type usually contains four elements: latitude, longitude, time, and a boolean flag indicating
whether the point marks the beginning of a new track log segment.

Page 15 001-00063-00 Rev. G

6.7.3 A301 - Track Log Transfer Protocol
The packet sequence for the Track Log Transfer Protocol is shown below:

Table 18 — A301 Track Log Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid _Records Records_Type

1 Devicel to Device2 | Pid_Trk Hdr <D0>

2 Devicel to Device2 | Pid Trk Data <D1>

3 Devicel to Device2 | Pid Trk Data <D1>

n-2 | Devicel to Device2 | Pid _Trk Data <D1>

n-1 | Devicel to Device2 | Pid Xfer Cmplt | Command Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Trk, which is also the command
value used by the host to initiate a transfer of track logs from the device.

Packet 1 (Pid_Trk_Hdr) contains track header information, which is provided in device-specific data type <D0>. This
data type usually contains information that uniquely identifies the track log. Packets 2 through n-2 (Pid_Trk_Data)
each contain data for one track log point, which is provided in device-specific data type <D1>.

More than one track log can be transferred during the protocol by sending another set of packets that resemble packets
1 through n-2 in the table above. This additional set of packets is sent immediately after the previous set of track log
packets. In other words, Pid_Xfer_Cmplt must not be sent until all track log packets have been sent for the multiple
track logs. Device2 must monitor the Packet ID to detect the beginning of a new track log, which is indicated by a
Packet ID of Pid_Trk_Hdr. Any number of track logs may be transferred in this fashion.

6.7.4 A302 - Track Log Transfer Protocol

The A302 Track Log Transfer Protocol is used in fitness devices to transfer tracks from the device to the Host. The
packet sequence for the protocol is identical to A301, except that the Host may only receive tracks from the device, and
not send them.

6.8 A400 - Proximity Waypoint Transfer Protocol

The Proximity Waypoint Transfer Protocol is used to transfer proximity waypoints between devices. When the host
commands the device to send proximity waypoints, the device will send all proximity waypoints stored in its database.
When the host sends proximity waypoints to the device, the host may selectively transfer any proximity waypoint it
chooses.

The packet sequence for the Proximity Waypoint Transfer Protocol is shown below:

Table 19 — A400 Proximity Waypoint Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type

1 Devicel to Device2 | Pid Prx Wpt Data | <D0>

2 Devicel to Device2 | Pid Prx Wpt Data | <D0>

n-2 | Devicel to Device2 | Pid Prx Wpt Data | <D0>

n-1 | Devicel to Device2 | Pid Xfer Cmplt Command_Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Prx, which is also the command
value used by the host to initiate a transfer of proximity waypoints from the device.

Page 16 001-00063-00 Rev. G

Packets 1 through n-2 (Pid_Prx_Wopt_Data) each contain data for one proximity waypoint, which is provided in device-
specific data type <DO0>. This data type usually contains the same waypoint data that is transferred during the Waypoint
Transfer Protocol, plus a valid proximity alarm distance.

Some devices (e.g. aviation panel mounts) require a delay of one or more seconds between proximity waypoints when
the host transfers proximity waypoints to the device.

6.9 A500 - Almanac Transfer Protocol

The Almanac Transfer Protocol is used to transfer almanacs between devices. The main purpose of this protocol is to
allow a host to update a device that has been in storage for more than six months, or has undergone a memory clear
operation. To avoid a potentially lengthy auto-initialization sequence, the device must have current almanac,
approximate date and time, and approximate position. Thus, after transferring an almanac to the device, the host should
subsequently transfer the date, time, and position (in that order) to the device using the following protocols: A600 —
Date and Time Initialization Protocol (see section 6.10 on page 17), and A700 — Position Initialization Protocol (see
section 6.12 on page 18). After receiving the almanac, the device may transmit a request for time and/or a request for
position using one of the Device Command protocols.

The device is also able to transmit almanac to the host, allowing the user to archive the almanac or transfer the almanac
to another device.

The packet sequence for the Almanac Transfer Protocol is shown below:

Table 20 — A500 Almanac Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Devicel to Device2 | Pid Records Records Type

1 Devicel to Device2 | Pid Almanac Data | <D0>

2 Devicel to Device2 | Pid Almanac Data | <D0>

n-2 | Devicel to Device2 | Pid Almanac Data | <D0>

n-1 | Devicel to Device2 | Pid Xfer Cmplt Command_Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet n-1 is Cmnd_Transfer_Alm, which is also the command
value used by the host to initiate a transfer of the almanac from the device

Packets 1 through n-2 (Pid_Almanac_Data) each contain almanac data for one satellite, which is provided in device-
specific data type <DO0>. This data type contains data that describes the satellite’s orbit characteristics.

Some device-specific data types (<D0>) do not include a satellite ID to relate each data packet to a particular satellite
in the GPS constellation. For these data types, Devicel must transmit exactly 32 Pid_Almanac_Data packets, and these
packets must be sent in PRN order (i.e., the first packet contains data for PRN-01 and so on up to PRN-32). If the data
for a particular satellite is missing or if the satellite is non-existent, then the week number for that satellite must be set
to a negative number to indicate that the data is invalid.

6.10 AG600 — Date and Time Initialization Protocol

The Date and Time Initialization Protocol is used to transfer the current date and time between devices. This is
normally done in conjunction with transferring an almanac to the device (see section 6.9 on page 17).

Page 17 001-00063-00 Rev. G

The packet sequence for the Date and Time Initialization Protocol is shown below:

Table 21 — A600 Date and Time Initialization Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 | Devicel to Device2 | Pid Date Time Data | <D0>

Packet 0 (Pid_Date_Time_Data) contains date and time data, which is provided in device-specific data type <D0>.
6.11 A650 - FlightBook Transfer Protocol

The FlightBook Transfer Protocol is used to transfer auto-generated FlightBook data to the host.

The packet sequence for the FlightBook Transfer Protocol is shown below:

Table 22 — A650 FlightBook Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Host to Device | Pid_Command Data Command_Id Type
1 Device to Host | Pid_Records Records Type

2 Device to Host | Pid_FlightBook Record | <D0>

n-2 | Device to Host | Pid FlightBook Record | <D0>
n-1 | Device to Host | Pid Xfer Cmplt Command_Id Type

Packet 0 (Pid_Command_Data) commands the device to initiate a FlightBook transfer. Packets 1 and n-1 are the
standard beginning and ending packets (see section 5.4 on page 8). The Command_Id_Type value in packets 0 and n-1
is Cmnd_FlightBook_Transfer. Packets 2 through n-2 each contain a FlightBook record using device-specific data type
<D0>.

6.12 A700 - Position Initialization Protocol

The Position Initialization Protocol is used to transfer the current position between devices. This is normally done in
conjunction with transferring an almanac to the device (see section 6.9 on page 17).

The packet sequence for the Position Initialization Protocol is shown below:

Table 23 — A700 Position Initialization Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 | Devicel to Device2 | Pid Position Data | <D0>

Packet 0 (Pid_Position_Data) contains position data, which is provided in device-specific data type <D0>. The device
may ignore the position data provided by this protocol whenever the device has a valid position fix or whenever the
device is in simulator mode.

6.13 A800 - PVT Protocol

The PVT Protocol is used to provide the host with real-time position, velocity, and time (PVT), which is transmitted by
the device approximately once per second. This protocol is provided as an alternative to NMEA so that the user may
permanently choose the Garmin format on the device instead of switching back and forth between NMEA format and
Garmin format.

The host can turn PVT on or off by using a Device Command Protocol (see section 6.3 on page 11). PVT is turned on
when the host sends the Cmnd_Start_Pvt_Data command and is turned off when the host sends the
Cmnd_Stop_Pvt Data command. Note that, as a side effect, most devices turn off PVT whenever they respond to the
Product Data Protocol.

Page 18 001-00063-00 Rev. G

ACK and NAK packets are optional for this protocol; however, unlike other protocols, the device will not retransmit a
PVT packet in response to receiving a NAK from the host.

The packet sequence for the PVT Protocol is shown below:

Table 24 — A800 PVT Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 | Device to Host (ACK/NAK optional) | Pid Pvt Data | <D0>

Packet O (Pid_Pvt_Data) contains position, velocity, and time data, which is provided in device-specific data type
<D0>.

6.14 A906 — Lap Transfer Protocol
The Lap Transfer Protocol is used to transfer fitness laps to the host.
The packet sequence for the Lap Transfer Protocol is shown below:

Table 25 — A906 Lap Transfer Protocol Packet Sequence

N | Direction Packet ID Packet Data Type
0 Device to Host | Pid_Records Records Type

1 Device to Host | Pid Lap <D0>

2 Device to Host | Pid Lap <D0>

n-2 | Device to Host | Pid Lap <D0>

n-1 | Device to Host | Pid Xfer Cmplt | Command_Id Type

The first and last packets (Packet 0 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_Id_Type value contained in Packet n-1 is Cmnd_Transfer_Laps, which is also the command
value used by the host to initiate a transfer of laps from the device.

Packets 1 through n-2 (Pid_Lap) each contain data for one lap, which is provided in device-specific data type <D0>.
6.15 A1000 — Run Transfer Protocol

The Run Transfer Protocol is used to transfer fitness runs to the host.

Page 19 001-00063-00 Rev. G

The packet sequence for the Run Transfer Protocol is shown below:

Table 26 — A1000 Run Transfer Protocol Packet Sequence

N Direction Packet ID Packet Data Type
0 Host to Device | Pid Command Data | Command Id_Type
1 Device to Host | Pid_Records Records Type

2 Device to Host | Pid Run <D0>

k-2 | Device to Host | Pid Run <D0>

k-1 | Device to Host | Pid Xfer Cmplt Command Id Type
Kk Host to Device | Pid Command Data | Command Id_Type
k+1 | Device to Host | Pid Records Records Type

k+2 | Device to Host | Pid Lap <Lap Type>

m-2 | Device to Host | Pid Lap <Lap Type>

m-1 | Device to Host | Pid Xfer Cmplt Command _Id Type
m Host to Device | Pid_ Command Data | Command_Id Type
m+1 | Device to Host | Pid_Records Records Type

m+2 | Device to Host | Pid_Trk Hdr <Trk _Hdr Type>
m+3 | Device to Host | Pid Trk Data <Trk Data Type>
n-2 | Device to Host | Pid Trk Data <Trk Data Type>
n-1 | Device to Host | Pid Xfer Cmplt Command _Id Type

The first and last packets for each transfer sequence (Packet 1 and Packet k-1, Packet k+1 and Packet m-1, and Packet
m+1 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on page 8). The
Command_Id_Type value contained in Packet 0 and Packet k-1 is Cmnd_Transfer_Runs. The Command_Id_Type
value contained in Packet k and Packet m-1 is Cmnd_Transfer_Laps. The Command_Id_Type value contained in
Packet m and Packet n-1 is Cmnd_Transfer_Trk.

Packets 2 through k-2 (Pid_Run) each contain data for one run, which is provided in device-specific data type <D0>.
Packets k+2 through m-2 (Pid_Lap) each contain data for one lap, which is provided in device-specific data type
<Lap_Type>. Data type <Lap_Type> is the data type associated with A906 in the Protocol Capability Protocol (see
section 6.2 on page 9). Packet m+2 (Pid_Trk_Hdr) contains track header information, which is provided in device-
specific data type <Trk_Hdr_Type>. Packets m+3 through n-2 each contain data for one track log point, which is
provided in device-specific data type <Trk_Data_Type>. Data types <Trk_Hdr_Type> and <Trk_Data_Type> are the
data types associated with A302 in the Protocol Capability Protocol, as reported by the device.

The device may transfer more than one track log during the protocol by sending another set of packets that resemble
packets m+2 through n-2 in the table above. This additional set of packets is sent immediately after the previous set of
track log packets. In other words, Pid_Xfer_Cmplt will not be sent until all track log packets have been sent for the
multiple track logs. The Host must monitor the Packet ID to detect the beginning of a new track log, which is indicated
by a Packet ID of Pid_Trk_Hdr. Any number of track logs may be transferred in this fashion.

6.16 A1002 — Workout Transfer Protocol

The Workout Transfer Protocol is used to transfer workouts between devices.

Page 20 001-00063-00 Rev. G

The packet sequence for the Workout Transfer Protocol is shown below:

Table 27 — A1002 Workout Transfer Protocol

N Direction Packet ID Packet Data Type

0* Devicel to Device2 | Pid Command Data Command Id Type

1 Device2 to Devicel | Pid Records Records Type

2 Device2 to Devicel | Pid Workout <D0>

m-2 | Device2 to Devicel | Pid Workout <D0>

m-1 | Device2 to Devicel | Pid Xfer Cmplt Command Id Type

m* | Devicel to Device2 | Pid Command Data Command Id Type

m+1 | Device2 to Devicel | Pid Records Records Type

m+2 | Device2 to Devicel | Pid Workout Occurrence | <Workout Occurrence Type>
n-2 | Device2 to Devicel | Pid Workout Occurrence | <Workout Occurrence Type>
n-1 | Device2 to Devicel | Pid Xfer Cmplt Command _Id Type

* This packet is sent only if Devicel is requesting data from Device2.

The first and last packets for each transfer sequence (Packet 1 and Packet m-1, and Packet m+1 and Packet n-1) are the
standard beginning and ending packets (see section 5.4 on page 8). The Command_Id_Type value contained in Packet
0 and Packet m-1 is Cmnd_Transfer_Workouts. The Command_Id_Type value contained in Packet m and Packet n-1 is
Cmnd_Transfer_Workout_Occurrences.

Packets 2 through m-2 (Pid_Workout) each contain data for one workout, which is provided in device-specific data
type <DO0>. Packets m+2 through n-2 each contain data for one workout occurrence, which is provided in device-
specific data type <Workout_Occurrence_Type>. Data type <Workout_Occurrence_Type> is the data type associated
with A1003 in the Protocol Capability Protocol (see section 6.2 on page 9), as reported by the device.

6.17 A1004 - Fitness User Profile Transfer Protocol
The Fitness User Profile Transfer Protocol is used to transfer a fitness user profile between devices.
The packet sequence for the Fitness User Profile Transfer Protocol is shown below:

Table 28 — A1004 Fitness User Profile Transfer Protocol

N | Direction Packet ID Packet Data Type
Devicel to Device2 | Pid Command_Data Command_Id_Type
1 | Device2 to Devicel | Pid Fitness User Profile | <D0>

* This packet is sent only if Devicel is requesting data from Device2.

o
*

The Command_ld_Type value contained in Packet 0 is Cmnd_Transfer_Fitness_User_Profile. Packetl contains a
fitness user profile, which is provided in device-specific data type <D0>.

6.18 A1005 - Workout Limits Transfer Protocol

The Workout Limits Transfer Protocol is used to transfer limits on workout data to the host.

Page 21 001-00063-00 Rev. G

The packet sequence for the Workout Limits Transfer Protocol is shown below:

Table 29 — A1005 Workout Limits Transfer Protocol

N | Direction Packet ID Packet Data Type
0 | Host to Device | Pid Command Data | Command Id Type
1 | Device to Host | Pid Workout Limits | <D0>

The Command_Id_Type value contained in Packet 0 is Cmnd_Transfer_Workout_Limits. Packet 1 contains the
workout limits, which are provided in device-specific data type <D0>.

6.19 A1006 — Course Transfer Protocol
The Course Transfer Protocol is used to transfer fitness courses between devices.
The packet sequence for the Course Transfer Protocol is shown below:

Table 30 — A1006 Course Transfer Protocol

N Direction Packet ID Packet Data Type
0* Devicel to Device2 | Pid Command Data | Command Id Type
1 Device2 to Devicel | Pid Records Records Type

2 Device2 to Devicel | Pid Course <D0>

j-2 Device2 to Devicel | Pid Course <D0>

j-1 Device2 to Devicel | Pid Xfer Cmplt Command _Id Type
j* Devicel to Device2 | Pid Command _Data | Command Id Type
j+1 | Device2 to Devicel | Pid Records Records Type

j+2 | Device2 to Devicel | Pid_Course Lap <Crs_Lap Type>
k-2 | Device2 to Devicel | Pid_Course Lap <Crs_Lap Type>
k-1 | Device2 to Devicel | Pid_Xfer Cmplt Command _Id Type
k* Devicel to Device2 | Pid_Command_Data | Command_Id_Type
k+1 | Device2 to Devicel | Pid_Records Records_Type

k+2 | Device2 to Devicel | Pid_Course_Trk Hdr | <Crs_Trk_Hdr_Type>
k+3 | Device2 to Devicel | Pid_Course_Trk Data | <Crs_Trk Data_Type>

m-2 | Device2 to Devicel | Pid_Course_Trk Data | <Crs_Trk Data_Type>

m-1 | Device2 to Devicel | Pid_Xfer Cmplt Command_Id_Type
m* | Devicel to Device2 | Pid_Command Data | Command_Id_Type
m+1 | Device2 to Devicel | Pid_Records Records_Type

m+2 | Device2 to Devicel | Pid Course Point <Crs_Pt Type>

n-2 | Device2 to Devicel | Pid Course Point <Crs_Pt Type>

n-1 | Device2 to Devicel | Pid_Xfer Cmplt Command_Id_Type

* This packet is sent only if Devicel is requesting data from Device2.

The first and last packets for each transfer sequence (Packet 1 and Packet j-1, Packet j+1 and Packet k-1, Packet k+1
and Packet m-1, and Packet m+1 and Packet n-1) are the standard beginning and ending packets (see section 5.4 on
page 8). The Command_ld_Type value contained in Packet 0 and Packet j-1 is Cmnd_Transfer_Courses. The
Command_ld_Type value contained in Packet j and Packet k-1 is Cmnd_Transfer_Course_Laps. The
Command_Id_Type value contained in Packet k and Packet m-1 is Cmnd_Transfer_Course_Tracks. The
Command_Id_Type value contained in Packet m and Packet n-1 is Cmnd_Transfer_Course_Points.

Packets 2 through j-2 (Pid_Course) each contain data for one course, which is provided in device-specific data type

<DO0>. Packets j+2 through k-2 (Pid_Course_Lap) each contain data for one course lap, which is provided in device-
specific data type <Crs_Lap_Type>. Data type <Crs_Lap_Type> is the data type associated with A1007 in the Protocol

Page 22 001-00063-00 Rev. G

Capability Protocol (see section 6.2 on page 9), as reported by the device. Packet k+2 (Pid_Course_Trk_Hdr) contains
course track header information, which is provided in device-specific data type <Crs_Trk_Hdr_Type>. Packets k+3
through m-2 each contain data for one course track log point, which is provided in device-specific data type
<Crs_Trk_Data_Type). If the Protocol Capability Protocol on the device reports A1012, then data types
<Crs_Trk_Hdr_Type> and <Crs_Trk_Data_Type> are the first and second data types associated with A1012,
respectively. Otherwise the data types <Crs_Trk_Hdr_Type> and <Crs_Trk_Data_Type> are the data types used by the
A302 Track Transfer Protocol (see section 6.7.4 on page 16). Packets m+2 through n-2 (Pid_Course_Point) each
contain data for one course point, which is provided in device-specific data type <Crs_Pt Type>. Data type
<Crs_Pt_Type> is the data type associated with A1008 in the Protocol Capability Protocol, as reported by the device.

More than one course track log can be transferred during the protocol by sending another set of packets that resemble
packets k+2 through m-2 in the table above. This additional set of packets is sent immediately after the previous set of
course track log packets. In other words, it is not necessary to send Pid_Xfer_Cmplt until all course track log packets
have been sent for the multiple course track logs. The Host must monitor the Packet ID to detect the beginning of a
new course track log, which is indicated by a Packet ID of Pid_Course_Trk_Hdr. Any number of course track logs may
be transferred in this fashion.

6.20 A1009 — Course Limits Transfer Protocol
The Course Limits Transfer Protocol is used to transfer limits on courses to the host.
The packet sequence for the Course Limits Transfer Protocol is shown below:

Table 31 — A1009 Course Limits Transfer Protocol

N | Direction Packet ID Packet Data Type
0 | Hostto Device | Pid Command Data | Command Id Type
1 | Device to Host | Pid Course Limits | <D0>

The Command_ld_Type value contained in Packet 0 is Cmnd_Transfer_Course_Limits. Packet 1 contains the course
limits, which are provided in device-specific data type <D0>.

6.21 A1051 - External Time Data Sync Protocol
The External Time Data Sync Protocol is used to transfer time data from external sources to the device.

The packet sequence for the External Time Data Sync Protocol is shown below:

Table 32 - A1051 External Time Data Sync Protocol

N | Direction Packet ID Packet Data Type
0 | Host to Device Pid_External _Time Sync Data <D0>

Packet 0 contains the external time sync data provided in the device specific data type <D0>.

The device may give preference to a higher-priority source of time data if one is available, such as GPS time or a user
specified time offset, and in such cases may choose to ignore incoming external time data.

7 Data Types

7.1 Serialization of Data

Every data type must be serialized into a stream of bytes for transferal over a serial data link. Serialization of each data
type is accomplished by transmitting the bytes in the order that they would occur in memory given a machine with the

following characteristics: 1) data structure members are stored in memory in the same order as they appear in the type
definition; 2) all structures are packed, meaning that there are no unused “pad” bytes between structure members; 3)

Page 23 001-00063-00 Rev. G

multibyte numeric types are stored in memory using little-endian format, meaning the least-significant byte occurs first
in memory followed by increasingly significant bytes in successive memory locations.

7.2 Character Sets

Unless otherwise noted, all devices accept characters from the ASCII character set. Each string type may contain a
specific subset of ASCII characters as shown below:

Table 33 — Character Sets

User Waypoint Identifier; | upper-case letters, numbers

Waypoint Comment: upper-case letters, numbers, space, hyphen
Route Comment: upper-case letters, numbers, space, hyphen
City: ignored by device

State: ignored by device

Facility Name: ignored by device

Country Code: upper-case letters, numbers, space

Route Identifier: upper-case letters, numbers, space, hyphen
Route Waypoint Identifier: | any ASCII character

Link Identifier: any ASCII character

Track Identifier: upper-case letters, numbers, space, hyphen

Some devices may allow additional characters beyond those mentioned above, but no attempt is made in this document
to identify these device-specific additions.

7.3 Basic Data Types

The following are basic data types that are used in the definition of more complex data types.
7.3.1 char

The char data type is 8 bits in size.

7.3.2 Character Arrays

Unless otherwise noted, all character arrays are padded with spaces and are not required to have a null terminator. For
example, consider the following data type:

char xyz[6]; /* xyz type */

The word “CAT” would be stored in this data type as shown below:

xyz[0] = ‘C’;
xyz[1l] = “A';
xyz[2] = ‘T’;
xyz[3] = Y 7';
xyz[4] = Y '3
xyz[5] = Y 7;

Character arrays provide a way to transfer strings between the host and the device. However, the size of a character
array may exceed the number of characters that a device has allotted for the string being transferred. If this is the case,
the device will ignore any characters beyond the size of its allotted string. For example, a “cmnt” character array may
allow 40 characters to be transferred, but a device may only have 16 characters allotted for a “cmnt” string. In this case,
the device will ignore the last 24 characters of the transferred character array.

Page 24 001-00063-00 Rev. G

7.3.3 Variable-Length Strings

In contrast to character arrays, a variable-length string is a null-terminated string that can be any length as long it does
not cause a data packet to become larger than the maximum allowable data packet size. When a variable-length string
is a member of a data structure, the data type is specified as follows:

typedef struct
{

sintlo6 abc;
/* char xyz[] null-terminated string */
sintl6 def;

} example type;

This syntax indicates that a variable-length string named xyz occurs between the abc and def members of the data
structure. Therefore, the address offset (from the beginning of the data structure) of the def member cannot be known
until run-time (after the variable-length string is decoded). Whenever possible, variable-length strings are placed at the
end of a data structure to minimize the need for run-time address offset calculations.

7.3.4 uint8

The uint8 data type is used for 8-bit unsigned integers.

7.3.5 uintl6

The uint16 data type is used for 16-bit unsigned integers.

7.3.6 uint32

The uint32 data type is used for 32-bit unsigned integers.

7.3.7 sintl6

The sint16 data type is used for 16-bit signed integers.

7.3.8 sint32

The sint32 data type is used for 32-bit signed integers.

7.3.9 float32

The float32 data type is 32-bit IEEE-format floating point data (1 sign bit, 8 exponent bits, and 23 mantissa bits).
7.3.10 float64

The float64 data type is 64-bit IEEE-format floating point data (1 sign bit, 11 exponent bits, and 52 mantissa bits).
7.3.11 bool

The bool data type is an 8-bit integer used to indicate true (non-zero) or false (zero).

7.3.12 position_type

The position_type is used to indicate latitude and longitude in semicircles, where 23! semicircles equal 180 degrees.

North latitudes and East longitudes are indicated with positive numbers; South latitudes and West longitudes are
indicated with negative numbers.

typedef struct
{
sint32 lat; /* latitude in semicircles */
sint32 lon; /* longitude in semicircles */
} position type;

Page 25 001-00063-00 Rev. G

The following formulas show how to convert between degrees and semicircles:

degrees = semicircles * (180 /2%%)
semicircles = degrees * (2% /180)

7.3.13 radian_position_type

The radian_position_type is used to indicate latitude and longitude in radians, where = radians equal 180 degrees.
North latitudes and East longitudes are indicated with positive numbers; South latitudes and West longitudes are
indicated with negative numbers.

typedef struct

{
float64 lat; /* latitude in radians */

float64 lon; /* longitude in radians */
} radian position type;

The following formulas show how to convert between degrees and radians:

degrees = radians * (180 /=)
radians = degrees * (= / 180)

7.3.14 time_type

The time_type is used in some data structures to indicate an absolute time. It is an unsigned 32 bit integer and its value
is the number of seconds since 12:00 am December 31, 1989 UTC.

7.3.15 symbol_type

The symbol_type is used in certain devices to indicate the symbol for a waypoint:
typedef uintl6 symbol type;

The enumerated values for symbol_type are shown below. Note that most devices that use this type are limited to a
much smaller subset of these symbols, and no attempt is made in this document to indicate which subsets are valid for
each of these devices. However, the device will ignore any disallowed symbol values that are received and instead
substitute the value for a generic dot symbol. Therefore, there is no harm in attempting to use any value shown in the
table below except that the device may not accept the requested value.

Page 26 001-00063-00 Rev. G

enum

sym_anchor

sym bell

sym diamond grn
sym diamond red
sym divel

sym dive2

sym dollar

sym fish

sym fuel
sym_horn
sym_house

sym knife

sym light
Sym_mug

sym skull
Sym_square_grn
sym square red
sym wbuoy

sym wpt dot

sym wreck

sym null

sym mob

sym buoy ambr
sym buoy blck
sym buoy blue
sym buoy grn

sym buoy grn red
sym buoy grn wht
sym buoy orng
sym buoy red

sym buoy red grn
sym buoy red wht
sym buoy violet
sym buoy wht

sym buoy wht grn
sym buoy wht red
sym_dot

sym rbcn

sym boat ramp
sym_camp

sym restrooms
sym showers

sym drinking wtr
sym phone

sym lst aid
sym_info

sym parking

sym park

sym picnic

sym scenic

sym skiing

sym swimming
sym_dam

sym controlled
sym _danger

sym restricted
sym _null 2

sym ball

~ 0~ 0~

~

~ 0~ 0~

O Joy Ul WP O
~

~

150,
151,
152,
153,
154,
155,
156,
157,
158,
159,
160,
161,
162,
163,
164,
165,
166,
167,
168,
169,

white anchor symbol
white bell symbol
green diamond symbol
red diamond symbol
diver down flag 1
diver down flag 2
white dollar symbol
white fish symbol
white fuel symbol
white horn symbol
white house symbol
white knife & fork symbol
white light symbol
white mug symbol

white skull and crossbones symbol*/

green square symbol

red square symbol

white buoy waypoint symbol
waypoint dot

white wreck symbol

null symbol (transparent)
man overboard symbol
amber map buoy symbol
black map buoy symbol
blue map buoy symbol
green map buoy symbol
green/red map buoy symbol
green/white map buoy symbol
orange map buoy symbol
red map buoy symbol
red/green map buoy symbol
red/white map buoy symbol
violet map buoy symbol
white map buoy symbol
white/green map buoy symbol
white/red map buoy symbol
white dot symbol

radio beacon symbol

boat ramp symbol
campground symbol
restrooms symbol

shower symbol

drinking water symbol
telephone symbol

first aid symbol
information symbol
parking symbol

park symbol

picnic symbol

scenic area symbol

skiing symbol

swimming symbol

dam symbol

controlled area symbol
danger symbol

restricted area symbol
null symbol

ball symbol

Page 27

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

001-00063-00 Rev. G

sym_car
sym deer

sym shpng cart
sym lodging

sym mine

sym trail head
sym_truck stop
sym user exit
sym flag

sym circle x

sym open 24hr
sym fhs facility
sym bot cond

sym tide pred stn
sym_anchor prohib
sym beacon

sym coast guard
sym reef

sym weedbed

sym dropoff
sym_dock

sym marina

sym bait tackle
sym_stump

sym dsc_posn

sym dsc distress
sym wbuoy dark
sym exp wreck
sym rcmmd anchor
sym brush pile
sym caution

sym fish 1

sym fish 2

sym fish 3

sym fish 4

sym fish 5

sym fish 6

sym fish 7

sym fish 8

sym fish 9

sym fish attract
sym_hump

sym laydown

sym ledge

sym 1illy pads
sym no wake zone
sym rocks

sym stop

sym undrwtr grss
sym undrwtr tree
sym pin yllw

sym flag yllw
sym diamond yllw
sym cricle yllw
sym square yllw
sym_triangle yllw

170,
171,
172,
173,
174,
175,
176,
177,
178,
179,
180,
181,
182,
183,
184,
185,
186,
187,
188,
189,
190,
191,
192,
193,
194,
195,
196,
197,
198,
199,
200,
201,
202,
203,
204,
205,
206,
207,
208,
2009,
210,
211,
212,
213,
214,
215,
216,
217,
218,
219,
220,
221,
222,
223,
224,
225,

car symbol

deer symbol

shopping cart symbol
lodging symbol

mine symbol

trail head symbol
truck stop symbol
user exit symbol
flag symbol

circle with x in the
open 24 hours symbol
U Fishing Hot Spots™
Bottom Conditions

cente

Facil

Tide/Current Prediction Station

anchor prohibited symbol
beacon symbol

coast guard symbol

reef symbol

weedbed symbol

dropoff symbol

dock symbol

marina symbol

bait and tackle symbol
stump symbol

DSC position report symbol
DSC distress call symbol
dark buoy waypoint symbol
exposed wreck symbol
recommended anchor symbol
brush pile symbol

caution symbol

fish symbol 1

fish symbol
fish symbol
fish symbol
fish symbol
fish symbol
fish symbol
fish symbol
fish symbol 9

fish attractor

hump symbol

laydown symbol

ledge symbol

1illy pads symbol

no wake zone symbol
rocks symbol

stop symbol

underwater grass symbol
underwater tree symbol
yellow pin symbol
yvellow flag symbol
yellow diamond symbol
yellow circle symbol
yellow square symbol
yellow triangle symbol

caocccaccaacaca

QO Joy Ul W

Page 28

r */

ity

001-00063-00 Rev. G

User customizable symbols
The values from sym begin custom to sym end custom inclusive are
reserved for the identification of user customizable symbols.

sym begin custom
sym_end custom

sym is hwy
sym us hwy
sym st hwy
sym mi mrkr
sym trcbck

sym golf

sym sml cty
sym med cty
sym 1lrg cty
sym freeway
sym ntl hwy
sym cap_cty
sym amuse pk
sym bowling
sym car rental
sym car_ repair
sym fastfood
sym fitness
Sym movie

Sym museum

sym pharmacy
sym pizza

sym post ofc
sym rv park
sym school
sym_stadium
sym store

sym zoo
sym gas plus
sym faces

sym ramp int
sym st int

sym weigh sttn
sym toll booth
sym elev pt
Sym_ex no_srvc
sym geo place mm
sym geo place wtr
sym geo place 1nd
sym bridge

sym building
sym cemetery
sym church

sym civil

sym crossing
sym_hist town
sym levee

sym military
sym oil field
sym_ tunnel

sym beach

sym forest

first user customizable symbol */
last user customizable symbol */
interstate hwy symbol */
us hwy symbol */
state hwy symbol */
mile marker symbol */
TracBack (feet) symbol *x/
golf symbol */
small city symbol */
medium city symbol */
large city symbol */
intl freeway hwy symbol */
intl national hwy symbol */
capitol city symbol (star) */
amusement park symbol */
bowling symbol */
car rental symbol */
car repair symbol */
fast food symbol */
fitness symbol */
movie symbol */
museum symbol */
pharmacy symbol */
pizza symbol */
post office symbol */
RV park symbol */
school symbol */
stadium symbol */
dept. store symbol */
zoo symbol */
convenience store symbol */
live theater symbol */
ramp intersection symbol */
street intersection symbol */
inspection/weigh station symbol */
toll booth symbol */
elevation point symbol */
exit without services symbol */
Geographic place name, man-made */
Geographic place name, water */
Geographic place name, land */
bridge symbol */
building symbol */
cemetery symbol */
church symbol */
civil location symbol */
crossing symbol */
historical town symbol */
levee symbol */
military location symbol */
0oil field symbol */
tunnel symbol */
beach symbol */
forest symbol */

Page 29

001-00063-00 Rev. G

sym_summit =
sym lrg ramp int =
sym lrg ex no srvc =
sym badge =
sym_cards =
sym_ snowski =
sym iceskate
sym wrecker
sym border =
sym geocache =
sym _geocache fnd =

sym cntct smiley

sym cntct ball cap
sym _cntct big ears

sym cntct spike
sym_cntct goatee
sym cntct afro
sym_cntct dreads
sym cntct femalel
sym cntct female2
sym _cntct female3
sym _cntct ranger
sym cntct kung fu
sym _cntct_ sumo
sym cntct pirate
sym cntct biker
sym _cntct alien
sym cntct bug

sym cntct cat

sym cntct dog

sym cntct pig

sym cntct blond woman

sym _cntct clown

sym cntct glasses boy
sym _cntct panda

sym cntct reserved5
sym_hydrant =
sym voice rec =
sym flag blue =
sym flag green =
sym flag red =
sym pin blue =
sym pin green =
sym pin red =
sym block blue =
sym block green =
sym block red =
sym bike trail =
sym circle red =
sym circle green =
sym circle blue
sym diamond blue =
sym oval red =
sym _oval green =
sym oval blue =
sym rect red
sym rect green
sym _rect blue =
sym square blue =
sym letter a red =
sym letter b red =
sym letter c red
sym letter d red =

8246, /*
8247, /*
8248, /*
8249, /*
8250, /*
8251, /*
- 8252, /%
= 8253, /*
8254, /%
8255, /%
8256, /*
8257, /*
8258, /%
8259, /*
8260, /*
8261, /*
8262, /*
8263, /*
8264, /*
= 8265, /*
8266, /*
8267, /*
8268, /*
8269, /*
8270, /*
8271, /*
8272, /*
8273, /*
8274, /*
8275, /*
8276, /*
- 8277,
- 8278,
= 8279,
= 8280,
- 8281,
8282, /*
8283, /*
8284, /*
8285, /*
8286, /*
8287, /*
8288, /*
8289, /*
8290, /*
8291, /*
8292, /*
8293, /*
8294, /%
8295, /*
= 8296, /*
8299, /*
8300, /*
8301, /*
8302, /*
= 8303, /*
= 8304, /*
8305, /*
8308, /*
8309, /*
8310, /*
- 8311, /*
8312, /*

summit symbol */
large ramp intersection symbol */
large exit without services smbl */
police/official badge symbol */
gambling/casino symbol */
snow skiing symbol */
ice skating symbol */
tow truck (wrecker) symbol */
border crossing (port of entry) */
geocache location */
found geocache */
Rino contact symbol, "smiley" */
Rino contact symbol, "ball cap" */
Rino contact symbol, "big ear" */
Rino contact symbol, "spike" */
Rino contact symbol, "goatee" */
Rino contact symbol, "afro" */
Rino contact symbol, "dreads" */
Rino contact symbol, "female 1" */
Rino contact symbol, "female 2" */
Rino contact symbol, "female 3" */
Rino contact symbol, "ranger" */
Rino contact symbol, "kung fu" */
Rino contact symbol, "sumo" */
Rino contact symbol, "pirate" */
Rino contact symbol, "biker" */
Rino contact symbol, "alien" */
Rino contact symbol, "bug" */
Rino contact symbol, "cat" */
Rino contact symbol, "dog" */
Rino contact symbol, "pig" */
/* contact symbol - blond woman */
/* contact symbol - clown */
/* contact symbol - glasses boy */
/* contact symbol - panda */
/* contact symbol - */
water hydrant symbol */
icon for a voice recording */
blue flag symbol */
green flag symbol */
red flag symbol */
blue pin symbol */
green pin symbol */
red pin symbol */
blue block symbol */
green block symbol */
red block symbol */
bike trail symbol */
red circle symbol */
green circle symbol */
blue circle symbol */
blue diamond symbol */
red oval symbol */
green oval symbol */
blue oval symbol */
red rectangle symbol */
green rectangle symbol */
blue rectangle symbol */
blue square symbol */
red letter 'A' symbol */
red letter 'B' symbol */
red letter 'C' symbol */
red letter 'D' symbol */

Page 30

001-00063-00 Rev. G

sym letter a green

sym letter b green =

sym letter c green
sym letter d green
sym letter a blue
sym letter b blue
sym letter c blue
sym letter d blue
sym number 0 red
sym number 1 red
sym number 2 red
sym number 3 red
sym number 4 red
sym number 5 red
sym number 6 red
sym number 7 red
sym number 8 red
sym number 9 red
sym number 0 green

8313,
8314,
8315,
8316,
8317,
8318,

= 8319,
= 8320,

8321,
8322,
8323,
8324,
8325,

= 8326,
= 8327,

sym number 1 green =

sym number 2 green
sym number 3 green
sym number 4 green
sym number 5 green
sym number 6 green

sym number 7 green =

sym number 8 green
sym number 9 green
sym number 0 blue
sym number 1 blue
sym number 2 blue
sym number 3 blue
sym number 4 blue
sym number 5 blue
sym number 6 blue
sym number 7 blue
sym number 8 blue
sym number 9 blue
sym_triangle blue
sym_triangle green
sym_triangle red
sym library

sym bus

sym city hall

sym wine

sym oem dealer
sym food asian
sym food deli

sym food italian
sym food seafood
sym food steak
sym atv

sym big game

sym _blind

sym blood trail
sym_cover
sym_covey

sym food source
sym furbearer
sym_ lodge

sym small game
sym_tracks

sym treed quarry

8328,
8329,
8330,
8331,
8332,
8333,
8334,
8335,
8336,
8337,
8338,
8339,
8340,
8341,
8342,
8343,

= 8344,

8345,
8346,
8347,
8348,
8349,
8350,
8351,
8352,
8353,
8354,
8355,
8356,

= 8357,

8358,
8359,
8360,
8361,
8362,

= 8363,

8364,
8365,
8366,
8367,

= 8368,
= 8369,

8370,
8371,
8372,
8373,

= 8374,

8375,

letter
letter
green letter
green letter
blue letter
blue letter
blue letter
blue letter
red number
red number
red number
red number
red number
red number
red number
red number
red number
red number
green number
green number
green number
green number
green number
green number
green number
green number
green number
green number
blue number
blue number
blue number
blue number
blue number
blue number
blue number
blue number
blue number
blue number
blue

green
green

o
T
o
'3
4
g
6!
v
g
rgr

AT
'B!
e
'D!
A
'B!
e
'D!

o'
L
oAl
3
40
g
6!
v
g
rgr
0!
v
o0
v
v4
L
6!
vy
g
g

symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol

symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol

symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol
symbol

triangle symbol

green triangle symbol
red triangle symbol

library

(book)

ground transportation

city hall
winery
OEM dealer

asian food symbol

deli symbol

italian food symbol
seafood symbol

steak symbol
ATV

Big Game
Blind

Blood Trail
Cover

Covey

Food Source
Furbearer
Lodge

Small Game
Tracks

Treed Quarry

Page 31

001-00063-00 Rev. G

sym tree stand = 8376, /* Tree Stand */
sym_truck = 8377, /* Truck */
sym upland game = 8378, /* Upland Game */
sym waterfowl = 8379, /* Waterfowl */
sym water source = 8380, /* Water Source */
sym tracker auto dark blue = 8381, /* Tracker - vehicles */
sym tracker auto green = 8382,

sym tracker auto light blue = 8383,

sym tracker auto light purple = 8384,

sym tracker auto lime = 8385,

sym tracker auto normal = 8386,

sym tracker auto orange = 8387,

sym tracker auto purple = 8388,

sym_tracker auto red = 8389,

sym tracker auto sky blue = 8390,

sym tracker auto yellow = 8391,

sym tracker gnrc dark blue = 8392, /* Tracker - generic */
sym tracker gnrc green = 8393,

sym tracker gnrc light blue = 8394,

sym tracker gnrc light purple = 8395,

sym tracker gnrc lime = 8396,

sym tracker gnrc normal = 8397,

sym tracker gnrc orange = 8398,

sym tracker gnrc purple = 8399,

sym tracker gnrc red = 8400,

sym tracker gnrc sky blue = 8401,

sym tracker gnrc yellow = 8402,

sym tracker pdstrn dark blue = 8403, /* Tracker - pedestrians */
sym tracker pdstrn green = 8404,

sym tracker pdstrn light blue = 8405,

sym tracker pdstrn light purple = 8406,

sym tracker pdstrn lime = 8407,

sym tracker pdstrn normal = 8408,

sym tracker pdstrn orange = 8409,

sym tracker pdstrn purple = 8410,

sym tracker pdstrn red = 8411,

sym tracker pdstrn sky blue = 8412,

sym tracker pdstrn yellow = 8413,

sym tracker auto dsbl dark blue = 8414, /* Tracker - vehicles */
sym tracker auto dsbl green = 8415,

sym tracker auto dsbl light blue = 8416,

sym_ tracker auto dsbl light purple = 8417,

sym tracker auto dsbl lime = 8418,

sym tracker auto dsbl normal = 8419,

sym tracker auto dsbl orange = 8420,

sym_tracker auto dsbl purple = 8421,

sym tracker auto dsbl red = 8422,

sym tracker auto dsbl sky blue = 8423,

sym tracker auto dsbl yellow = 8424,

sym_tracker gnrc_dsbl dark blue = 8425, /* Tracker - generic */
sym tracker gnrc dsbl green = 8426,

sym tracker gnrc dsbl light blue = 8427,

sym tracker gnrc dsbl light purple = 8428,

sym_tracker gnrc dsbl lime = 8429,

sym tracker gnrc dsbl normal = 8430,

sym_tracker gnrc dsbl orange = 8431,

sym tracker gnrc dsbl purple = 8432,

sym_tracker gnrc dsbl red = 8433,

sym tracker gnrc dsbl sky blue = 8434,

sym_tracker gnrc dsbl yellow = 8435,

sym tracker pdstrn dsbl dark blue = 8436, /* Tracker - pedestrians */
sym tracker pdstrn dsbl green = 8437,

sym tracker pdstrn dsbl light blue = 8438,

Page

32

001-00063-00 Rev. G

7.4

sym_tracker pdstrn dsbl light purple =
sym tracker pdstrn dsbl lime =
sym tracker pdstrn dsbl normal =
sym tracker pdstrn dsbl orange =
sym tracker pdstrn dsbl purple =

sym tracker pdstrn dsbl red

sym tracker pdstrn dsbl sky blue =
sym tracker pdstrn dsbl yellow =

sym _sm _red circle
sym sm yllw circle

sym_sm green circle

sym sm blue circle
sym alert

sym snow mobile
sym wind turbine
sym camp fire

sym binoculars
sym_kayak
Sym_canoe

sym shelter

sym xski
sym_hunting

sym horse tracks
sym tree

sym lighthouse

sym creek crossing

sym_deer sign scrape

sym deer sign rub
sym elk

sym elk wallow
sym shed antlers
sym turkey

sym_airport =
sym_int

sym ndb =
sym:vor =
sym heliport =
sym private =
sym soft fld =
sym tall tower =
sym_short tower =
sym _glider =
sym ultralight =
sym parachute =
sym_vortac =
sym vordme

sym faf

sym lom =
sym map =
sym_ tacan =
sym seaplane =
}i

Product-Specific Data Types

8440,
8441,
8442,
8443,
= 8444,
8445,
8446,
= 8447, /* Small red circle
= 8448, /* Small yellow circle
= 8449, /* Small green circle
= 8450, /* Small blue circle
= 8451, /* Red Alert (! point)
8452, /* Snow mobile
8453, /* Wind turbine
= 8454, /* Camp Fire
= 8455, /* Binoculars
= 8456, /* Kayak
8457, /* Canoe
8458, /* Lean to
8459, /* Cross country skiing
= 8460, /* Hunting
= 8461, /* Horse trail
= 8462, /* Deciduous tree
= 8463, /* Lighthouse
= 8464, /* Creek Crossing
= 8465, /* Deer Sign (Scrape)
= 8466, /* Deer Sign (Rub)
= 8467, /* Elk
= 8468, /* Elk Wallow
8469, /* Shed (Antlers)
= 8470, /* Turkey
airport symbol */
intersection symbol */
non-directional beacon symbol */
VHF omni-range symbol */
heliport symbol */
private field symbol */
soft field symbol */
tall tower symbol */
short tower symbol */
glider symbol */
ultralight symbol */
parachute symbol */
VOR/TACAN symbol */
VOR-DME symbol */
first approach fix */
localizer outer marker */
missed approach point */
TACAN symbol */
Seaplane Base */

Note that all positions are referenced to WGS-84. All altitudes are referenced to the WGS-84 geoid.

Page 33

001-00063-00 Rev. G

7.4.1 D100 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40]; /* comment */

} D100 _Wpt Type;

7.4.2 D101 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */

char cmnt [40] ; /* comment */

float32 dst; /* proximity distance (meters) */
uint8 smbl; /* symbol id */

} D101 Wpt Type;

The enumerated values for the “smbl” member of the D101_Wpt_Type are the same as those for symbol_type (see
section 7.3.15 on page 26). However, since the “smbl” member of the D101_Wpt_Type is only 8-bits (instead of 16-
bits), all symbol_type values whose upper byte is non-zero are disallowed in the D101_Wpt_Type.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.43 D102_Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */

char cmnt [40] ; /* comment */

float32 dst; /* proximity distance (meters) */
symbol type smbl; /* symbol id */

} D102 Wpt Type;
The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.4 D103 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40] ; /* comment */

uint8 smbl; /* symbol id */

uint8 dspl; /* display option */

} D103 Wpt Type;

The enumerated values for the “smbl” member of the D103_Wpt Type are shown below:

Page 34 001-00063-00 Rev. G

enum

{

smbl dot = 0, /* dot symbol */

smbl house = 1, /* house symbol */

smbl gas = 2, /* gas symbol */

smbl car = 3, /* car symbol */

smbl fish = 4, /* fish symbol */

smbl boat = 5, /* boat symbol */

smbl anchor = 6, /* anchor symbol */
smbl wreck = 7, /* wreck symbol */

smbl exit = 8, /* exit symbol */

smbl skull = 9, /* skull symbol */

smbl flag = 10, /* flag symbol */

smbl camp =11, /* camp symbol */

smbl circle x =12, /* circle with x symbol */
smbl deer = 13, /* deer symbol */

smbl 1st aid = 14, /* first aid symbol */
smbl back track = 15 /* back track symbol */

b

The enumerated values for the “dspl” member of the D103_Wpt Type are shown below:

enum
{
dspl name =0, /* Display symbol with waypoint name */
dspl none =1, /* Display symbol by itself */
dspl cmnt =2 /* Display symbol with comment */
bi
7.45 D104 _Wpt_Type
typedef struct
{
char ident[6]; /* identifier */
position type posn; /* position */
uint32 unused; /* should be set to zero */
char cmnt [40]; /* comment */
float32 dst; /* proximity distance (meters) */
symbol type smbl; /* symbol id */
uint8 dspl; /* display option */

} D104 Wpt Type;

The enumerated values for the “dspl” member of the D104 Wpt_Type are shown below:

enum
{
dspl smbl none =0, /* Display symbol by itself */
dspl smbl only =1, /* Display symbol by itself */
dspl smbl name = 3, /* Display symbol with waypoint name */
dspl smbl cmnt = 5, /* Display symbol with comment */

bi
The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.6 D105 Wpt_Type

typedef struct
{

position type posn; /* position */
symbol type smbl; /* symbol id */
/* char wpt ident([]; null-terminated string */

} D105 Wpt Type;

Page 35 001-00063-00 Rev. G

7.4.7 D106 _Wpt_Type

typedef struct
{

uint8 wpt class; /* class */

uint8 subclass[13]; /* subclass */

position type posn; /* position */

symbol type smbl; /* symbol id */
/* char wpt ident[]; null-terminated string */
/* char Ink ident[]; null-terminated string */

} D106 _Wpt Type;

The enumerated values for the “wpt_class” member of the D106_Wpt_Type are as follows:

Zero:
Non-zero:

indicates a user waypoint (“subclass” is ignored).
indicates a non-user waypoint (“subclass” must be valid).

For non-user waypoints (such as a city in the device map database), the device will provide a non-zero value in the
“wpt_class” member, and the “subclass” member will contain valid data to further identify the non-user waypoint. If
the host wishes to transfer this waypoint back to the device (as part of a route), the host must leave the “wpt_class” and
“subclass” members unmodified. For user waypoints, the host must ensure that the “wpt_class” member is zero, but the
“subclass” member will be ignored and should be set to zero.

The “Ink_ident” member provides a string that indicates the name of the path from the previous waypoint in the route
to this one. For example, “HIGHWAY 101” might be placed in “Ink_ident” to show that the path from the previous

waypoint to this waypoint is along Highway 101. The “Ink_ident” string may be empty (i.e., no characters other than
the null terminator), which indicates that no particular path is specified.

7.4.8 D107_Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */

char cmnt [40] ; /* comment */

uint8 smbl; /* symbol id */

uint8 dspl; /* display option */

float32 dst; /* proximity distance (meters) */
uint8 color; /* waypoint color */

} D107 Wpt Type;

The enumerated values for the “smbl” member of the D107_Wpt_Type are the same as the “smbl” member of the

D103_Wpt_Type.

The enumerated values for the “dspl” member of the D107_Wopt_Type are the same as the “dspl” member of the

D103_Wopt_Type.

The enumerated values for the “color” member of the D107 _Wpt_ Type are shown below:

enum
{
clr default =0, /* Default waypoint color */
clr red =1, /* Red */
clr green = 2, /* Green */
clr blue =3 /* Blue */

i

Page 36

001-00063-00 Rev. G

7.49 D108 Wpt_Type

typedef struct
{

uint8 wpt class; /* class (see below) */
uint8 color; /* color (see below) */
uint8 dspl; /* display options (see below) */
uint8 attr; /* attributes (see below) */
symbol type smbl; /* waypoint symbol */
uint8 subclass[18]; /* subclass */
position type posn; /* position */
float32 alt; /* altitude in meters */
float32 dpth; /* depth in meters */
float32 dist; /* proximity distance in meters */
char state[2]; /* state */
char ccl2]; /* country code */
/* char ident[]; variable length string */
/* char comment []; waypoint user comment */
/* char facilityl[]; facility name */
/* char cityl[]; city name */
/* char addr[]; address number */
/* char cross_roadl[]; intersecting road label */

} D108 Wpt Type;

The enumerated values for the “wpt_class” member of the D108_Wpt_Type are defined as follows:

enum
{
user wpt = 0x00, /* user waypoint */
avtn apt wpt = 0x40, /* aviation airport waypoint */
avtn_int wpt = 0x41, /* aviation intersection waypoint */
avtn ndb wpt = 0x42, /* aviation NDB waypoint */
avtn _vor wpt = 0x43, /* aviation VOR waypoint */
avtn arwy wpt = 0x44, /* aviation airport runway waypoint */
avtn aint wpt = 0x45, /* aviation airport intersection */
avtn andb wpt = 0Ox4o, /* aviation airport ndb waypoint */
map_pnt wpt = 0x80, /* map point waypoint */
map area wpt = 0x81, /* map area waypoint */
map_int wpt = 0x82, /* map intersection waypoint */
map adrs_wpt = 0x83, /* map address waypoint */
map_line wpt = 0x84, /* map line waypoint */

i

The “color” member can be one of the following values:

Page 37 001-00063-00 Rev. G

enum

{

clr black = 0,
clr dark red =1,
clr dark green = 2,
clr dark yellow = 3,
clr dark blue = 4,
clr dark magenta =5,
clr dark cyan = 6,
clr light gray =17,
clr dark gray = 8,
clr red =9,
clr green = 10,
clr yellow = 11,
clr blue =12,
clr magenta =13,
clr cyan = 14,
clr white = 15,
clr default color = 255

}i

The enumerated values for the “dspl” member of the D108_Wpt Type are the same as the “dspl” member of the
D103_Wpt_Type.

The “attr” member should be set to a value of 0x60.

The “subclass” member of the D108 _Wpt_Type is used for map waypoints only, and should be set to 0x0000
0x00000000 OXFFFFFFFF OXFFFFFFFF OXFFFFFFFF for other classes of waypoints.

The “alt” and “dpth” members may or may not be supported on a given device. A value of 1.0e25 in either of these
fields indicates that this parameter is not supported or is unknown for this waypoint.

The “dist” member is used during the Proximity Waypoint Transfer Protocol only, and should be set to 1.0e25 for other
cases.

The “comment” member of the D108 _Wpt Type is used for user waypoints only, and should be an empty string for
other waypoint classes.

The “facility” and “city” members are used only for aviation waypoints, and should be empty strings for other
waypoint classes.

The “addr” member is only valid for MAP_ADRS_ WPT class waypoints and will be an empty string otherwise.

The “cross_road” member is valid only for MAP_INT_WPT class waypoints, and will be an empty string otherwise.

Page 38 001-00063-00 Rev. G

7.4.10 D109 Wpt_Type

typedef struct
{
uint8
uint8
uint8
uint8
symbol type
uint8
position type
float32
float32
float32
char
char
uint32

/* char

/* char

/* char

/* char

/* char

/* char
} D109 Wpt Type;

dtyp;
wpt class;
dspl color;
attr;
smbl;

subclass[18];

posn;
alt;

dpth;

dist;
state[2];
ccl2];

ete;
ident[];
comment [];
facilityl[];
cityll;
addr[];

cross roadl[];

data packet type (0x01 for D109)

class */
display & color (see below) */
attributes (0x70 for D109) */

waypoint symbol */

subclass */

position */

altitude in meters */

depth in meters */

proximity distance in meters */
state */

country code */

outbound link ete in seconds */
variable length string */
waypoint user comment */
facility name */

city name */

address number */

intersecting road label */

All fields are defined the same as D108_Wpt_Type except as noted below.

dtyp - Data packet type, must be 0x01 for D109_Wpt_Type.

*/

dspl_color - The 'dspl_color' member contains three fields; bits 0-4 specify the color, bits 5-6 specify the waypoint
display attribute and bit 7 is unused and must be 0. Color values are as specified for D108_Wpt_Type except that the
default value is Ox1f. Display attribute values are as specified for D108_Wpt_Type.

attr - Attribute. Must be 0x70 for D109_Wpt_Type.

ete - Estimated time en route in seconds to next waypoint. Default value is OXFFFFFFFF.

Page 39

001-00063-00 Rev. G

7.4.11 D110 _Wpt_Type

typedef struct
{

uint8 dtyp; /* data packet type (0x01 for D110) */
uint8 wpt class; /* class */
uint8 dspl color; /* display & color (see below) */
uint8 attr; /* attributes (0x80 for D110) */
symbol type smbl; /* waypoint symbol */
uint8 subclass[18]; /* subclass */
position type posn; /* position */
float32 alt; /* altitude in meters */
float32 dpth; /* depth in meters */
float32 dist; /* proximity distance in meters */
char state[2]; /* state */
char ccl2]; /* country code */
uint32 ete; /* outbound link ete in seconds */
float32 temp; /* temperature */
time type time; /* timestamp */
uintlé wpt cat; /* category membership */

/* char ident[]; variable length string */

/* char comment []; waypoint user comment */

/* char facilityl[]; facility name */

/* char cityl[]; city name */

/* char addr[]; address number */

/* char cross_road[]; intersecting road label */

} D110 _Wpt Type;
All fields are defined the same as D109_Wpt_Type except as noted below.

The valid values for the "wpt_class" member of the D110_Wopt_Type are defined as follows. If an invalid value is
received, the value shall be user_wpt.

enum
{
user wpt = 0x00, /* user waypoint */
avtn_apt wpt = 0x40, /* aviation airport waypoint */
avtn_int wpt = 0x41, /* aviation intersection waypoint */
avtn ndb wpt = 0x42, /* aviation NDB waypoint */
avtn vor wpt = 0x43, /* aviation VOR waypoint */
avtn arwy wpt = 0x44, /* aviation airport runway waypoint */
avtn_aint wpt = 0x45, /* aviation airport intersection */
avtn_andb_wpt = 0x46, /* aviation airport ndb waypoint */
map_pnt_wpt = 0x80, /* map point waypoint */
map_area wpt = 0x81, /* map area waypoint */
map_int wpt = 0x82, /* map intersection waypoint */
map adrs_wpt = 0x83, /* map address waypoint */
map_line wpt = 0x84, /* map line waypoint */

i

wpt_cat - Waypoint Category. May not be supported by all devices. Default value is 0x0000. This is a bit field that
provides category membership information for the waypoint. The waypoint may be a member of up to 16 categories. If
a bit is set then the waypoint is a member of the corresponding category. For example, if bits 0 and 4 are set then the
waypoint is a member of categories 1 and 5. For more information see section 6.5 on page 13.

temp - Temperature. May not be supported by all devices. A value of 1.0e25 in this field indicates that this parameter is
not supported or is unknown for this waypoint.

time - Time. May not be supported by all devices. A value of OXFFFFFFFF in this field indicates that this parameter is
not supported or is unknown for this waypoint.

attr - Attribute. Must be 0x80 for D110_Wpt_Type.

Page 40 001-00063-00 Rev. G

dspl_color - The 'dspl_color' member contains three fields; bits 0-4 specify the color, bits 5-6 specify the waypoint
display attribute and bit 7 is unused and must be 0. Valid color values are specified below. If an invalid color value is
received, the value shall be Black. Valid display attribute values are as shown below. If an invalid display attribute
value is received, the value shall be Name.

enum
{
clr Black =0,
clr Dark Red =1,
clr Dark Green = 2,
clr Dark Yellow = 3,
clr Dark Blue = 4,
clr Dark Magenta =5,
clr Dark Cyan = 6,
clr Light Gray =17,
clr Dark Gray = 8,
clr Red =9,
clr Green = 10,
clr Yellow = 11,
clr Blue =12,
clr Magenta = 13,
clr Cyan = 14,
clr White = 15,
clr Transparent = 16
bi

enum
{
dspl Smbl Name = 0, /* Display symbol with waypoint name */
dspl Smbl Only =1, /* Display symbol by itself */
dspl Smbl Comment =2 /* Display symbol with comment */

i

posn - Position. If a D110 waypoint is received that contains a value in the lat field of the posn field that is greater than
230 or less than -2"30, then that waypoint shall be rejected.

7.4.12 D120 _Wpt_Cat_Type

typedef struct
{

char name[17]; /* category name */
} D120 _Wpt Cat Type;

The name field contains a null-terminated string with a maximum length of 16 consecutive non-null characters. If a
D120 waypoint category is received that contains a string with more than 16 consecutive non-null characters then that
name should be truncated to the first 16 characters and then null terminated. If a D120 waypoint category is received
with a null in the first character of the name field then that packet should not be processed.

7.4.13 D150 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

char ccl2]; /* country code */
uint8 wpt class; /* class */

position type posn; /* position */

sintl6 alt; /* altitude (meters) */
char city[24]; /* city */

char state[2]; /* state */

char name [30] ; /* facility name */
char cmnt [40]; /* comment */

} D150 Wpt Type;

Page 41 001-00063-00 Rev. G

The enumerated values for the “wpt_class” member of the D150 _Wpt_Type are shown below:

enum
{
apt wpt class = 0, /* airport waypoint class */
int wpt class =1, /* intersection waypoint class */
ndb _wpt class = 2, /* NDB waypoint class */
vor wpt class = 3, /* VOR waypoint class */
usr wpt class = 4, /* user defined waypoint class */
rwy wpt class =5, /* airport runway threshold waypoint class */
aint wpt class = 6, /* airport intersection waypoint class */
locked wpt class =7 /* locked waypoint class */

b7

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.14 D151_Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40] ; /* comment */

float32 dst; /* proximity distance (meters) */
char name [30]; /* facility name */

char cityl[24]; /* city */

char state[2]; /* state */

sintl6 alt; /* altitude (meters) */
char ccl2]; /* country code */

char unused?; /* should be set to zero */
uint8 wpt class; /* class */

} D151 Wpt Type;

The enumerated values for the “wpt_class” member of the D151_Wpt_Type are shown below:

enum
{
apt wpt class =
vor wpt class
usr wpt class
locked wpt class =

i

/* airport waypoint class */

/* VOR waypoint class */

/* user defined waypoint class */
/* locked waypoint class */

~

Il
w N PO
~

~

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt class” member is equal to apt wpt class.

Page 42 001-00063-00 Rev. G

7.4.15 D152 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40]; /* comment */

float32 dst; /* proximity distance (meters) */
char name [30]; /* facility name */

char city[24]; /* city */

char state[2]; /* state */

sintl6 alt; /* altitude (meters) */
char ccl2]; /* country code */

uint8 unused?2; /* should be set to zero */
uint8 wpt class; /* class */

} D152 Wpt Type;

The enumerated values for the “wpt_class” member of the D152 Wpt_Type are shown below:

enum
{
apt wpt class =
int wpt class
ndb wpt class =
vor wpt class
usr wpt class
locked wpt class =

b

/* airport waypoint class */

/* intersection waypoint class */
/* NDB waypoint class */

/* VOR waypoint class */

/* user defined waypoint class */
/* locked waypoint class */

~

~

~

g W N O
~

~

The “locked_wpt class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked wpt class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.16 D154_Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40] ; /* comment */

float32 dst; /* proximity distance (meters) */
char name [30]; /* facility name */

char city[24]; /* city */

char state[2]; /* state */

sintl6 alt; /* altitude (meters) */
char ccl2]; /* country code */

uint8 unused?2; /* should be set to zero */
uint8 wpt class; /* class */

symbol type smbl; /* symbol id */

} D154 Wpt Type;

The enumerated values for the “wpt_class” member of the D154 Wpt_Type are shown below:

Page 43 001-00063-00 Rev. G

enum

{

apt wpt class = 0, /* airport waypoint class */

int wpt class =1, /* intersection waypoint class */

ndb _wpt class = 2, /* NDB waypoint class */

vor wpt class = 3, /* VOR waypoint class */

usr wpt class = 4, /* user defined waypoint class */

rwy wpt class =5, /* airport runway threshold waypoint class */
aint wpt class = 6, /* airport intersection waypoint class */
andb_wpt class =17, /* airport NDB waypoint class */

sym wpt class = 8, /* user defined symbol-only waypoint class */
locked wpt class =9 /* locked waypoint class */

b

The “locked_wpt_class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt_class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_ wpt_class or
sym_wpt class. The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.17 D155 _Wpt_Type

typedef struct
{

char ident[6]; /* identifier */

position type posn; /* position */

uint32 unused; /* should be set to zero */
char cmnt [40]; /* comment */

float32 dst; /* proximity distance (meters) */
char name [30]; /* facility name */

char city[24]; /* city */

char state[2]; /* state */

sintlé6 alt; /* altitude (meters) */
char ccl2]; /* country code */

uint8 unused?2; /* should be set to zero */
uint8 wpt _class; /* class */

symbol type smbl; /* symbol id */

uint8 dspl; /* display option */

} D155 Wpt Type;

The enumerated values for the “dspl” member of the D155 Wpt_Type are shown below:

enum
{
dspl smbl only =1, /* Display symbol by itself */
dspl smbl name = 3, /* Display symbol with waypoint name */
dspl smbl cmnt = 5, /* Display symbol with comment */

b

The enumerated values for the “wpt_class” member of the D155 Wpt_Type are shown below:

enum
{
apt wpt class =0, /* airport waypoint class */
int wpt class =1, /* intersection waypoint class */
ndb wpt class = 2, /* NDB waypoint class */
vor wpt class = 3, /* VOR waypoint class */
usr_wpt class = 4, /* user defined waypoint class */
locked wpt class =5 /* locked waypoint class */

i

Page 44 001-00063-00 Rev. G

The “locked wpt class” code indicates that a route within a device contains an aviation database waypoint that the
device could not find in its aviation database (presumably because the aviation database was updated to a newer
version). The host should never send the “locked_wpt _class” code to the device.

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

EENT3

The “city,” “state,” “name,” and “cc” members are invalid when the “wpt_class” member is equal to usr_wpt_class.
The “alt” member is valid only when the “wpt_class” member is equal to apt_wpt_class.

7.4.18 D200 _Rte Hdr_Type
typedef uint8 D200 Rte Hdr Type; /* route number */

The route number contained in the D200_Rte_Hdr_Type must be unique for each route.

7.4.19 D201_Rte Hdr_Type

typedef struct
{
uint8 nmbr; /* route number */
char cmnt [20] ; /* comment */
} D201 Rte Hdr Type;

The “nmbr” member must be unique for each route. Some devices require a unique “cmnt” for each route, and other
devices do not. There is no mechanism available for the host to determine whether a device requires a unique “cmnt”,
and the host must be prepared to receive unique or hon-unique “cmnt” from the device.

7.4.20 D202_Rte_Hdr_Type

typedef struct
{

/* char rte ident[]; variable length string */
} D202 Rte Hdr Type;

7.4.21 D210 Rte Link _Type

typedef struct
{

uintlé class; /* link class; see below */
uint8 subclass[18]; /* subclass */
/* char ident[]; variable length string */

i

The “class” member can be one of the following values:

enum
{
line =0,
link =1,
net = 2,
direct = 3,
snap = OxFF

bi
The “ident” member has a maximum length of 51 characters, including the terminating NULL.

If “class” is set to “direct” or “snap”, subclass should be set to its default value of 0x0000 0x00000000 OxFFFFFFFF
OXFFFFFFFF OXFFFFFFFF.

Page 45 001-00063-00 Rev. G

7.4.22 D300_Trk_Point_Type

typedef struct
{

position type posn;
time type time; /*
bool new_trk; /*

} D300 _Trk Point Type;

/* position */

time */
new track segment? */

The “time” member indicates the time at which the track log point was recorded.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.4.23 D301 _Trk_Point_Type

typedef struct
{

position type posn; /*
time type time; /*
float32 alt; /*
float32 dpth; /*
bool new_trk; /*

} D301 Trk Point Type;

position */

time */

altitude in meters */
depth in meters */
new track segment? */

The “time” member indicates the time at which the track log point was recorded.

The ‘alt’ and ‘dpth” members may or may not be supported on a given device. A value of 1.0e25 in either of these
fields indicates that this parameter is not supported or is unknown for this track point.

When true, the “new_trk” member indicates that the track log point marks the beginning of a new track log segment.

7.4.24 D302_Trk_Point_Type

typedef struct
{

position type posn; /*
time type time; /*
float32 alt; /*
float32 dpth; /*
float32 temp; /*
bool new_ trk; /*

} D302 Trk Point Type;

position */

time */

altitude in meters */
depth in meters */
temp in degrees C */
new track segment? */

All fields are defined the same as D301_Trk_Point_Type except as noted below.

temp - Temperature. May not be supported by all devices. A value of 1.0e25 in this field indicates that this parameter is

not supported or is unknown for this track point.

7.4.25 D303 _Trk_Point_Type

typedef struct
{

position type posn; /*
time type time; /*
float32 alt; /*
uint8 heart rate; /*

} D303_Trk Point Type;

position */

time */

altitude in meters */

heart rate in beats per minute */

All fields are defined the same as D301_Trk_Point_Type except as noted below.

The “posn” member is invalid if both lat and lon are equal to Ox7FFFFFFF.

The “heart_rate” member is invalid if its value is equal to 0.

Page 46

001-00063-00 Rev. G

Two consecutive track points with invalid position, invalid altitude, and invalid heart rate indicate a pause in track
point recording during the time between the two points.

7.4.26 D304_Trk_Point_Type

typedef struct
{

position type posn; /* position */

time type time; /* time */

float32 alt; /* altitude in meters */

float32 distance; /* distance traveled in meters. See below. */
uint8 heart rate; /* heart rate in beats per minute */

uint8 cadence; /* in revolutions per minute */

bool sensor; /* 1s a wheel sensor present? */

} D304 Trk Point Type;
All fields are defined the same as D303_Track_Point_Type except as noted below.

The “distance” member is the cumulative distance traveled in the track up to this point in meters as determined by the
wheel sensor or from the position, whichever is more accurate. If the distance cannot be obtained, the “distance”
member has a value of 1.0e25, indicating that it is invalid.

A value of OXFF for the “cadence” member indicates that it is invalid.

Two consecutive track points with invalid position, invalid altitude, invalid heart rate, invalid distance and invalid
cadence indicate a pause in track point recording during the time between the two points.

7.4.27 D310 _Trk_Hdr_Type

typedef struct
{

bool dspl; /* display on the map? */
uint8 color; /* color (same as D108) */
/* char trk ident[]; null-terminated string */

} D310 Trk Hdr Type;
The ‘trk_ident” member has a maximum length of 51 characters including the terminating NULL.

7.4.28 D311 _Trk_Hdr_Type

typedef struct
{

uintlé index; /* unique among all tracks received from device
*/
} D311 Trk Hdr Type;

7.4.29 D312_Trk_Hdr_Type

typedef struct
{

bool dspl; /* display on the map? */
uint8 color; /* color (see below) */
/* char trk ident[]; null-terminated string */

} D312 Trk Hdr Type;
The 'trk_ident' member has a maximum length of 51 characters including the terminating NULL.

The “color” member can be one of the following values:

Page 47 001-00063-00 Rev. G

enum

{

clr Black =0,
clr Dark Red =1,
clr Dark Green = 2,
clr Dark Yellow = 3,
clr Dark Blue = 4,
clr Dark Magenta =5,
clr Dark Cyan = 6,
clr Light Gray =7,
clr Dark Gray = 8,
clr Red =9,
clr Green = 10,
clr Yellow = 11,
clr Blue =12,
clr Magenta =13,
clr Cyan = 14,
clr White = 15,
clr Transparent = 1o,
clr DefaultColor = 255
bi

7.4.30 D400 Prx_Wpt_Type

typedef struct
{
D100_Wpt Type wpt; /* waypoint */
float32 dst; /* proximity distance (meters) */

} D400 _Prx Wpt Type;
The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.31 D403 _Prx_Wpt_Type

typedef struct
{
D103 _Wpt Type wpt; /* waypoint */
float32 dst; /* proximity distance (meters) */
} D403 Prx Wpt Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

7.4.32 D450_Prx_Wpt_Type

typedef struct
{

int idx; /* proximity index */
D150 Wpt Type wpt; /* waypoint */
float32 dst; /* proximity distance (meters) */

} D450 Prx Wpt Type;

The “dst” member is valid only during the Proximity Waypoint Transfer Protocol.

Page 48 001-00063-00 Rev. G

7.4.33 D500_Almanac_Type

typedef struct
{

uintlo wn; /* week number (weeks) */

float32 toa; /* almanac data reference time (s) */
float32 afo; /* clock correction coefficient (s) */
float32 afl; /* clock correction coefficient (s/s) */
float32 e; /* eccentricity (=) */

float32 sqrta; /* square root of semi-major axis (a) (m**1/2) */
float32 m0; /* mean anomaly at reference time (r) */
float32 w; /* argument of perigee (r) */

float32 omgO0; /* right ascension (r) */

float32 odot; /* rate of right ascension (r/s) */
float32 i; /* inclination angle (r) */

} D500 Almanac Type;

7.4.34 D501_Almanac_Type

typedef struct
{

uintlo wn; /* week number (weeks) */

float32 toa; /* almanac data reference time (s) */
float32 afo; /* clock correction coefficient (s) */
float32 afl; /* clock correction coefficient (s/s) */
float32 e; /* eccentricity (=) */

float32 sqrta; /* square root of semi-major axis (a) (m**1/2) */
float32 mO; /* mean anomaly at reference time (r) */
float32 w; /* argument of perigee (r) */

float32 omgO0; /* right ascension (r) */

float32 odot; /* rate of right ascension (r/s) */
float32 i; /* inclination angle (r) */

uint8 hlth; /* almanac health */

} D501 Almanac Type;

7.4.35 D550 Almanac_Type

typedef struct
{

uint8 svid; /* satellite id */

uintlé wn; /* week number (weeks) */

float32 toa; /* almanac data reference time (s) */
float32 afo; /* clock correction coefficient (s) */
float32 afl; /* clock correction coefficient (s/s) */
float32 e; /* eccentricity (=) */

float32 sgrta; /* square root of semi-major axis (a) (m**1/2) */
float32 m0; /* mean anomaly at reference time (r) */
float32 w; /* argument of perigee (r) */

float32 omgO0; /* right ascension (r) */

float32 odot; /* rate of right ascension (r/s) */
float32 i; /* inclination angle (r) */

} D550 Almanac_Type;

The “svid” member identifies a satellite in the GPS constellation as follows: PRN-01 through PRN-32 are indicated by
“svid” equal to O through 31, respectively.

Page 49 001-00063-00 Rev. G

7.4.36 D551 Almanac_Type

typedef struct
{

uint8 svid; /* satellite id */

uintlé6 wn; /* week number (weeks) */

float32 toa; /* almanac data reference time (s) */
float32 afo; /* clock correction coefficient (s) */
float32 afl; /* clock correction coefficient (s/s) */
float32 e; /* eccentricity (=) */

float32 sqrta; /* square root of semi-major axis (a) (m**1/2) */
float32 mO; /* mean anomaly at reference time (r) */
float32 w; /* argument of perigee (r) */

float32 omgO0; /* right ascension (r) */

float32 odot; /* rate of right ascension (r/s) */
float32 i; /* inclination angle (r) */

uint8 hlth; /* almanac health bits 17:24 (coded) */

} D551 Almanac_ Type;

The “svid” member identifies a satellite in the GPS constellation as follows: PRN-01 through PRN-32 are indicated by
“svid” equal to 0 through 31, respectively.

7.4.37 D600_Date_Time_Type

typedef struct
{

uint8 month; /* month (1-12) */
uint8 day; /* day (1-31) */
uintlé year; /* year (1990 means 1990) */
uintlo hour; /* hour (0-23) */
uint8 minute; /* minute (0-59) */
uint8 second; /* second (0-59) */
} D600 _Date Time Type;
The D600_Date_Time_Type contains the UTC date and UTC time.
7.4.38 D650 FlightBook Record_Type
typedef struct
{
time type takeoff time; /* Time flight started */
time type landing time; /* Time flight ended */
position type takeoff posn; /* Takeoff lat/lon */
position type landing posn; /* Takeoff lat/lon */
uint32 night time; /* Seconds flown in night time conditions */
uint32 num_landings; /* Number of landings during the flight */
float32 max_speed; /* Max velocity during flight (meters/sec) */
float32 max_alt; /* Max altitude above WGS84 ellipsoid (meters)*/
float32 distance; /* Distance of flight (meters) */
bool cross_country flag; /* Flight met cross country criteria */
/* char departure name[]; Name of airport <= 31 bytes */
/* char departure ident[]; ID of airport <= 11 bytes */
/* char arrival name[]; Name of airport <= 31 bytes */
/* char arrival ident[];ID of airport <= 11 bytes */
/* char ac_id[]; N Number of airplane <= 11 bytes */

} D650_Flight Book Record Type;

7.4.39 D700 _Position_Type
typedef radian position type D700 Position Type;

Page 50 001-00063-00 Rev. G

7.4.40 D800 _Pvt_Data_Type

typedef struct
{

float32 alt; /* altitude above WGS 84 ellipsoid (meters) */
float32 epe; /* estimated position error, 2 sigma (meters) */
float32 eph; /* epe, but horizontal only (meters) */

float32 epv; /* epe, but vertical only (meters) */

uintlé fix; /* type of position fix */

float64 tow; /* time of week (seconds) */

radian position type posn; /* latitude and longitude (radians) */

float32 east; /* velocity east (meters/second) */

float32 north; /* velocity north (meters/second) */

float32 up; /* velocity up (meters/second) */

float32 msl hght; /* height of WGS84 ellipsoid above MSL (meters) */
sintl6 leap scnds; /* difference between GPS and UTC (seconds) */
uint32 wn_days; /* week number days */

} D800 _Pvt Data Type;

The “alt” parameter provides the altitude above the WGS 84 ellipsoid. To find the altitude above mean sea level, add
“msl_hght” to “alt” (“msl_hght” gives the height of the WGS 84 ellipsoid above mean sea level at the current position).

The “tow” parameter provides the number of seconds (excluding leap seconds) since the beginning of the current week,
which begins on Sunday at 12:00 AM (i.e., midnight Saturday night-Sunday morning). The “tow” parameter is based
on Universal Coordinated Time (UTC), except UTC is periodically corrected for leap seconds while “tow” is not
corrected for leap seconds. To find UTC, subtract “leap_scnds” from “tow.” Since this may cause a negative result for
the first few seconds of the week (i.e., when “tow” is less than “leap_scnds”), care must be taken to properly translate
this negative result to a positive time value in the previous day. Also, since “tow” is a floating point number and may
contain fractional seconds, care must be taken to properly round off when using “tow” in integer conversions and
calculations.

The “wn_days” parameter provides the number of days that have occurred from UTC December 31st, 1989 to the
beginning of the current week (thus, “wn_days” always represents a Sunday). To find the total number of days that
have occurred from UTC December 31st, 1989 to the current day, add “wn_days” to the number of days that have
occurred in the current week (as calculated from the “tow” parameter).

The default enumerated values for the “fix” member of the D800 Pvt Data_Type are shown below. It is important for
the host to inspect this value to ensure that other data members in the D800_Pvt_Data_Type are valid. No indication is
given as to whether the device is in simulator mode versus having an actual position fix.

enum
{
unusable =0, /* failed integrity check */
invalid =1, /* invalid or unavailable */
2D = 2, /* two dimensional */
3D = 3, /* three dimensional */
2D diff = 4, /* two dimensional differential */
3D diff =5 /* three dimensional differential */

i

Page 51 001-00063-00 Rev. G

Older software versions in certain devices use slightly different enumerated values for fix. The list of devices and the
last version of software in which these different values are used is:

Device Last SW Version
eMap 2.64
GPSMAP 162 2.62
GPSMAP 295 2.19
eTrex 2.10
eTrex Summit 2.07
StreetPilot 111 2.10
eTrex Japanese 2.10
eTrex Venture/Mariner | 2.20
eTrex Europe 2.03
GPS 152 2.01
eTrex Chinese 2.01
eTrex Vista 2.12
eTrex Summit Japanese | 2.01
eTrex Summit 2.24
eTrex GolfLogix 2.49

The enumerated values for these device software versions is one more than the default:

enum
{
unusable =1, /* failed integrity check */
invalid = 2, /* invalid or unavailable */
2D = 3, /* two dimensional */
3D = 4, /* three dimensional */
2D diff =5, /* two dimensional differential */
3D diff =6 /* three dimensional differential */
bi
7.4.41 D906 _Lap_Type
typedef struct
{
time type start time;
uint32 total time; /* In hundredths of a second */
float32 total distance; /* In meters */
position type begin; /* Invalid if both lat and lon are Ox7FFFFFFF */
position type end; /* Invalid if both lat and lon are Ox7FFFFFFF */
uintlo calories;
uint8 track index; /* See below */
uint8 unused; /* Unused. Set to 0. */

} D906 Lap Type;
Possible values for the track_index member are as follows:

Value Meaning

0-252 The lap is the last in its run. The track index is valid and can be used to lookup the track and
associate it with the run.

253 -254 The lap is the last in its run; however, the run has no associated track.

255 The lap is not the last in its run. Or, if this is the last lap received, then it must be the last lap
in its run. In this case, the track for the run is any track not already associated with a run.

Use the A302 Track Transfer Protocol to receive the tracks associated with these laps (see section 6.7.4 on page 16).

Page 52 001-00063-00 Rev. G

7.4.42 D1000_Run_Type

typedef struct
{
uint32
uint32
uint32
uint8
uint8
uintlé
struct
{
uint32
float32
} virtual partner;
D1002 Workout Type
} D1000_Run Type

track index;
first lap index;
last lap index;
sport type;
program type;
unused;

time;
distance;

workout;

/* Index of associated track */

/* Index of first associated lap */
/* Index of last associated lap */
/* See below */

/* See below */

/* Unused. Set to 0. */

/* Time result of virtual partner */

/* Distance result of virtual partner */

/* Workout */

The value of the “track index” member must be OXFFFFFFFF if there is no associated track.

All laps between “first lap index” and “last lap index” are also contained in the run.

The “sport_type” member can be one of the following values:

enum
{
running
biking
other

}i

1
=
~

The “program_type” member can be one of the following values:

enum
{
none
virtual partner
workout

b

/*
=2 /*

1
=
~

Completed with Virtual Partner */
Completed as part of a workout */

The values in the “virtual_partner” struct is considered valid only if “program_type” is equal to “virtual_partner”.

The value of the “workout” member is considered valid only if “program_type” is equal to “workout”.

7.4.43 D1001_Lap_Type

typedef struct
{
uint32
time type
uint32
float32
float32
position_ type
position type
uintlée
uint8
uint8
uint8
} D1001 Lap Type;

index; /*
start time; /*
total time; /%
total dist; /*

max_speed; /*
begin; /*
end; /*
calories; /*

avg_heart rate;
max heart rate;
intensity; /*

Unique among all laps received from device
Start of lap time */

Duration of lap, in hundredths of a second
Distance in meters */

In meters per second */

Invalid if both lat and lon are Ox7FFFFFFF
Invalid if both lat and lon are Ox7FFFFFFF
Calories burned this lap */

/* In beats-per-minute, 0 if invalid */

/* In beats-per-minute, 0 if invalid */
See below */

The “intensity” member can be one of the following values:

Page 53 001-00063-00 Rev. G

*/
*/

*/
*/

enum
{
active =0, /* This is a standard, active lap */
rest =1 /* This is a rest lap in a workout */

i

7.4.44 D1002_Workout_Type

typedef struct
{

uint32 num valid steps; /* Number of valid steps (1-20) */
struct

{

char custom name[16]; /* Null-terminated step name */

float32 target custom zone low; /* See below */

float32 target custom zone high; /* See below */

uintlé6 duration value; /* See below */

uint8 intensity; /* Same as D1001 */

uint8 duration type; /* See below */

uint8 target type; /* See below */

uint8 target value; /* See below */

uintlé6 unused; /* Unused. Set to 0. */

} steps[20];
char name[16]; /* Null-terminated workout name */
uint8 sport_ type; /* Same as D1000 */

} D1002 Workout Type;

All valid steps appear in order at the beginning of the “steps” array.

Page 54 001-00063-00 Rev. G

The values of “duration_type” and “duration_value” in the “steps” struct are defined as follows:

Table 34 — D1002 Workout Step Duration

duration_type

duration value

0=Time

In seconds

1 = Distance

In meters

2 = Heart Rate Less
Than

A value from 0 — 100 indicates a percentage of max heart rate. A value above 100 indicates
beats-per-minute (255 max) plus 100.

3 = Heart Rate
Greater Than

A value from 0 — 100 indicates a percentage of max heart rate. A value above 100 indicates
beats-per-minute (255 max) plus 100.

4 = Calories Burned | In calories
5= Open Undefined
6 = Repeat Number of the step to loop back to. Steps are assumed to be in the order in which they are

received, and are numbered starting at one. The “custom_name” and “intensity” members are
undefined for this duration type.

G,

The values of “target_type”,
struct are defined as follows:

target value”,

CEINT3

Table 35 — D1002 Workout Step Targets

target custom_zone low”, and “target custom_zone high” in the “steps”

target type target value

target custom_zone low

target custom_zone high

0 = Speed Speed zone (1 —
10). A value of 0
indicates a custom

Z0ne.

Speed in meters per second.
Undefined if not a custom zone.

Speed in meters per second.
Undefined for a non-custom zone.

1 = Heart Rate | Heart rate zone (1
—5). Avalue of 0

indicates a custom

A value of 0 — 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute

A value of 0 — 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute

zone. (max of 255) plus 100. (max of 255) plus 100.
Undefined if not a custom zone. Undefined if not a custom zone.
2 = Open Undefined Undefined Undefined
Any value if Number of Undefined Undefined
the duration repetitions
type is
“Repeat”

7.4.45 D1003_Workout_Occurrence_Type

typedef struct
{

char
time type

workout name([16];
day;

} D1003 Workout Occurrence Type;

/* Null-terminated workout name */
/* Day on which the workout falls */

The “workout_name” field associates this workout occurrence with a particular workout.

Page 55

001-00063-00 Rev. G

7.4.46 D1004_Fitness_User_Profile_Type

typedef struct
{

struct
{
struct
{
uint8 low _heart rate; /* In beats-per-minute, must be > 0 */
uint8 high heart rate; /* In beats-per-minute, must be > 0 */
uintle unused; /* Unused. Set to 0. */
} heart rate zones([5];
struct
{
float32 low_ speed; /* In meters-per-second */
float32 high speed; /* In meters-per-second */
char name[16]; /* Null-terminated speed-zone name */
} speed zones[10];
float32 gear_weight; /* Weight of equipment in kilograms */
uint8 max heart rate; /* In beats-per-minute, must be > 0 */
uint8 unusedl; /* Unused. Set to 0. */
uintlé unused?2; /* Unused. Set to 0. */
} activities[3];
float32 weight; /* User’s weight, in kilograms */
uintlé birth year; /* No base value (i.e. 1990 means 1990) */
uint8 birth month; /* 1 = January, etc. */
uint8 birth day; /* 1 = first day of month, etc. */
uint8 gender; /* See below */

} D1004 Fitness User Profile Type;

Each element in the “activities” array represents a different sport: “activities[0]” is running, “activities[1]” is biking,
and “activities[2]” is other.

The “gender” member can be one of the following values:

enum
{
female =0,
male =1

i

7.4.47 D1005_Workout_Limits

typedef struct
{

uint32 max_workouts; /* Maximum workouts */
uint32 max_unscheduled workouts; /* Maximum unscheduled workouts */
uint32 max occurrences; /* Maximum workout occurrences */

} D1005 Workout Limits;

The “max_workouts” member represents the total number of workouts that the device can hold. The
“max_unscheduled_workouts” member represents the number of workouts the device can hold which do not have any
occurrences (i.e. they are “unscheduled”). The “max_occurrences” member represents the number of workout
occurrences that the device can hold.

As an example, suppose a device can hold 200 total workouts, 25 unscheduled workouts, and 200 occurrences. Under
these circumstances, it would be appropriate to send 175 scheduled workouts, up to 200 combined occurrences of those
scheduled workouts, and 25 workouts that have not been scheduled. Alternately, the device could accept a full 200
scheduled workouts; that would simply leave no room for unscheduled workouts (since the maximum number of
workouts would be reached).

Page 56 001-00063-00 Rev. G

7.4.48 D1006_Course_Type

typedef struct
{

uintlé index; /* Unique among courses on device */
uintle unused; /* Unused. Set to 0. */

char course name[l6]; /* Null-terminated, unique course name */
uintlé6 track_index; /* Index of the associated track */

} D1006 Course Type;
The value of the “track_index” member must be OXFFFFFFFF if there is no associated track.

7.4.49 D1007_Course_Lap_Type

typedef struct
{

uintlé6 course_index; /* Index of associated course */
uintlé lap index; /* This lap’s index in the course */
uint32 total time; /* In hundredths of a second */
float32 total dist; /* In meters */

position type begin; /* Starting position of the lap */
position type end; /* Final position of the lap */
uint8 avg_heart rate; /* In beats-per-minute */

uint8 max_heart rate; /* In beats-per-minute */

uint8 intensity; /* Same as D1001 */

uint8 avg _cadence; /* In revolutions-per-minute */

} D1007 Course Lap Type;
The “begin” and “end” members are invalid if their lat and lon values are 0x7FFFFFFF.
The “avg_heart rate” and “max_heart rate” members are invalid if their values are 0.
The “avg_cadence” is invalid if its value is OXFF.

7.4.50 D1008_Workout_Type

typedef struct
{

uint32 num valid steps; /* Number of valid steps (1-20) */
struct

{

char custom name[16]; /* Null-terminated step name */

float32 target custom zone low; /* See below */

float32 target custom zone high; /* See below */

uintle duration value; /* Same as D1002 */

uint8 intensity; /* Same as D1001 */

uint8 duration type; /* Same as D1002 */

uint8 target type; /* See below */

uint8 target value; /* See below */

uintlé6 unused; /* Unused. Set to 0. */

} steps[20];
char name[16]; /* Null-terminated workout name */
uint8 sport_ type; /* Same as D1000 */

} D1008 Workout Type;

All valid steps appear in order at the beginning of the “steps” array.

Page 57 001-00063-00 Rev. G

9 .

The values of “target_type”,
struct are defined as follows:

target value”,

CEINNT3

Table 36 — D1008 Workout Step Targets

target custom_zone low”, and “target custom zone high” in the “steps”

target type target value

target custom zone low

target custom zone high

0 = Speed Speed zone (1 -
10). A value of 0
indicates a custom

Z0ne.

Speed in meters per second.
Undefined if not a custom zone.

Speed in meters per second.
Undefined for a non-custom zone.

1 = Heart Rate | Heart rate zone (1
—5). Avalue of 0

indicates a custom

A value of 0 — 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute

A value of 0 — 100 indicated the
percentage of max heart rate. A value
above 100 indicates beats-per-minute

zone. (max of 255) plus 100. (max of 255) plus 100.
Undefined if not a custom zone. Undefined if not a custom zone.

2 =0pen Undefined Undefined Undefined
3 = Cadence 0 Cadence in revolutions-per-minute Cadence in revolutions-per-minute
Any value if Number of Undefined Undefined
the duration repetitions
type is
“Repeat”

7.4.51 D1009 Run_Type

typedef struct
{

Index of associated track */
Index of first associated lap */
Index of last associated lap */

Set to 0. */
Set to 0. */

Time result of quick workout */
Distance result of quick workout */

uintlé track index; /*
uintlé6 first lap_index; /*
uintlé6 last lap_ index; /*
uint8 sport type; /* Same as D1000 */
uint8 program_type; /* See below */
uint8 multisport; /* See below */
uint8 unusedl; /* Unused.
uintlé unused?; /* Unused.
struct

{

uint32 time; /*

float32 distance; /*

} gquick workout;
D1008 Workout Type workout; /* Workout */

} D1009 Run Type;

The value of the “track index” member must be OXFFFF if there is no associated track.

Page 58

001-00063-00 Rev. G

The “program_type” member is a bit field that indicates the type of run this is. The following table describes the
meaning of each bit:

Table 37 — Bit Field: program_type

Bit Interpretation

0 (least significant bit) This is a virtual partner run

1 This is associated with a workout

2 This is a quick workout

3 This is associated with a course

4 This is an interval workout

5 This is part of an auto-MultiSport session
6-7 (most significant bits) | Undefined. Set to 0.

If the “program_type” member indicates that this run is associated with a course, then the “workout” member contains
the name of the associated course in its “name” field.

The “multisport” member can be one of the following values:

enum
{
no =0, /* Not a MultiSport run */
yes =1, /* Part of a MultiSport session */
yesAndLastInGroup =2 /* The last of a MultiSport session */

i

If the “auto MultiSport” bit is set in the “program_type” member, and if the last lap in the run is a rest lap, then that last
lap’s time represents the time during which the user was transitioning to the next sport.
7.4.52 D1010_Run_Type

typedef struct
{

uint32 track_ index; /* Index of associated track */
uint32 first lap index; /* Index of first associated lap */
uint32 last lap_ index; /* Index of last associated lap */
uint8 sport_ type; /* Sport type (same as D1000) */
uint8 program_type; /* See below */
uint8 multisport; /* Same as D1009 */
uint8 unused; /* Unused. Set to 0. */
struct
{
uint32 time; /* Time result of virtual partner */
float32 distance; /* Distance result of virtual partner */
} virtual partner;
D1002 Workout Type workout; /* Workout */

} D1010_Run_ Type;
The value of the “track _index” member must be OXFFFFFFFF if there is no associated track.
All laps between “first lap index” and “last lap index” are also contained in the run.

The “program_type” member can be one of the following values:

enum
{
none =0,
virtual partner =1, /* Completed with Virtual Partner */
workout = 2, /* Completed as part of a workout */
auto multisport =3 /* Completed as part of an auto MultiSport */

}:

Page 59 001-00063-00 Rev. G

The values in the “virtual partner” struct is considered valid only if “program_type” is equal to “virtual_partner”.

B

The value of the “workout” member is considered valid only if “program_type” is equal to “workout”.

If “program_type” is equal to “auto_multisport” and if the last lap in the run is a rest lap, then that last lap’s time
represents the time during which the user was transitioning to the next sport.

7.453 D1011_Lap_Type

typedef struct
{
uintlé
uintlé
time type
uint32
float32
float32
position type
position type
uintl6
uint8
uint8
uint8
uint8
uint8
} D1011 Lap Type;

index;
unused;
start time;
total time;
total dist;
max_ speed;
begin;

end;
calories;

/*

avg heart rate;
max heart rate;

intensity;
avg_cadence;

/*
/*

trigger method;

Unique among all laps received from device
Unused. Set to 0. */

Start of lap time */

Duration of lap, in hundredths of a second
Distance in meters */

In meters per second */

Invalid if both lat and lon are Ox7FFFFFFF
Invalid if both lat and lon are Ox7FFFFFFF
Calories burned this lap */

/* In beats-per-minute, 0 if invalid */

/* In beats-per-minute, 0 if invalid */
Same as D1001 */

In revolutions-per-minute,
/* See below */

OxFF if invalid

*/

*/

*/

*/

*/

The “trigger method” member represents the way in which this lap was started. It can be one of the following values:

enum
{
manual
distance
location
time
heart rate

b

~

Il
S w N - o
~

~

~

7.4.54 D1012_Course_Point_Type

typedef struct
{
char
uint8
uintl6
uintlé
time type
uint8

name[11];

/* Null-terminated name */

unusedl; /* Unused. Set to 0. */
course_index; /* Index of associated course */
unused?2; /* Unused. Set to 0. */

track point time; /* Time */

point type;

} D1012 Course Point Type;

/* See below */

All course points must be unique based on the combination of their course_index and track_point_time.

The “point_type” member can be one of the following values:

Page 60

001-00063-00 Rev. G

enum

{

generic =0,
summit =1,
valley = 2,
water = 3,
food = 4,
danger =5,
left = 6,
right =17,
straight = 8,
first aid =9,
fourth category =10,
third category = 11,
second category =12,
first category =13,
hors category = 14,
sprint = 15

}i

7.4.55 D1013 Course_Limits_Type

typedef struct
{

uint32 max_courses; /* Maximum courses */

uint32 max course laps; /* Maximum course laps */

uint32 max_course_pnt; /* Maximum course points */
uint32 max course trk pnt; /* Maximum course track points */

} D1013 Course Limits Type;

7.4.56 D1051 External_Time_Sync_Data_ Type
typedef struct
{

time type current utc; /* Current UTC */

sint32 timezone offset; /* Local timezone in seconds from UTC */
bool is dst_info included; /* Is DST information valid? */

uint8 dst_adjustment; /* DST adjustment in 15 minute increments */
time type dst_start; /* Specified in UTC */

time type dst_end; /* Specified in UTC */

} D1051 External Time Sync Data Type;

The field timezone_offset is east-positive. This field will include the dst_adjustment value (properly converted) if DST
is in effect — see below for how to determine if DST is currently active.

If is_dst_info_included is FALSE the values contained in dst_adjustment, dst_start, and dst_end are unspecified and
should not be accessed. Accessing and using these fields in this case may result in undefined behavior. No default
values are specified or assumed by this protocol.

The field dst_adjustment is in units of 15 minute increments. This field includes the time adjustment the client must
apply when the DST period starts and remove when the DST period finishes.

The field dst_start is the UTC time corresponding to the next daylight savings start and therefore is in the future
relative to current UTC. When sent by the host, this parameter indicates the time when the next daylight savings time
starts. Once configured, the client can use this value to determine when to adjust its local time by the DST adjustment
value. To adjust local time, the DST adjustment should be converted to seconds and added to the timezone_offset field.
If this time is previous to the current time, this value should be ignored.

The field dst_end is the UTC time corresponding to the next daylight savings end and therefore is in the future relative
to current UTC. The format of this time is as described in the Current Time field. When sent by the host, this parameter
indicates the time when the next daylight savings time ends. Once configured, the client can use this value to determine

Page 61 001-00063-00 Rev. G

when to reverse the adjustment of local time by the DST adjustment value. To reverse this adjustment, the DST

adjustment value should be converted to seconds and subtracted from the timezone_offset field. If this time is previous
to the current time, this value should be ignored.

To determine if DST is active a device may compare the dst_start and dst_end values. If dst_start is less than dst_end
DST is not currently in effect. If dst_end is less than dst_start DST is currently in effect. Such comparisons should not,

in general, be required since the associated timezone_offset will include any required DST adjustments when DST is in
effect.

Page 62 001-00063-00 Rev. G

8

8.1

The table below provides the Product ID numbers for many Garmin devices.

Appendixes

Device Product IDs

Table 38 — Product IDs

Product Name ID
GNC 250 52
GNC 250 XL 64
GNC 300 33
GNC 300 XL 98
GPS 12 77
GPS 12 87
GPS 12 96
GPS 12 XL 77
GPS 12 XL 96
GPS 12 XL Chinese 106
GPS 12 XL Japanese 105
GPS 120 47
GPS 120 Chinese 55
GPS 120 XL 74
GPS 125 Sounder 61
GPS 126 95
GPS 126 Chinese 100
GPS 128 95
GPS 128 Chinese 100
GPS 150 20
GPS 150 XL 64
GPS 155 34
GPS 155 XL 98
GPS 165 34
GPS 38 41
GPS 38 Chinese 56
GPS 38 Japanese 62
GPS 40 31
GPS 40 41
GPS 40 Chinese 56
GPS 40 Japanese 62
GPS 45 31
GPS 45 41
GPS 45 Chinese 56
GPS 45 XL 41
GPS 48 96
GPS 50 7
GPS 55 14
GPS 55 AVD 15
GPS 65 18
GPS 75 13
GPS 75 23
GPS 75 42
GPS 85 25
GPS 89 39
GPS 90 45

Page 63

001-00063-00 Rev. G

Product Name ID

GPS 92 112
GPS 95 24
GPS 95 35
GPS 95 AVD 22
GPS 95 AVD 36
GPS 95 XL 36
GPS Il 59
GPS |1 Plus 73
GPS |1 Plus 97
GPS 111 72
GPS 111 Pilot 71
GPSCOM 170 50
GPSCOM 190 53
GPSMAP 130 49

GPSMAP 130 Chinese | 76
GPSMAP 135 Sounder | 49

GPSMAP 175 49
GPSMAP 195 48
GPSMAP 205 29
GPSMAP 205 44
GPSMAP 210 29
GPSMAP 215 88
GPSMAP 220 29
GPSMAP 225 88
GPSMAP 230 49

GPSMAP 230 Chinese | 76
GPSMAP 235 Sounder | 49

8.2 Device Protocol Capabilities

Table 39 below provides the protocol capabilities of many devices that do not implement the Protocol Capability
Protocol (see section 6.2 on page 9). Column 1 contains the applicable Product ID number, and Column 2 contains the
applicable software version number. The remaining columns show the device-specific protocol IDs and data type 1Ds
for the types of protocols indicated. Within these remaining columns, protocol IDs are prefixed with P, L, or A
(Physical, Link, or Application) and data type IDs are prefixed with D.

The presence of a device in the table indicates that the device did not originally implement the Protocol Capabilities
Protocol (A001). However, if the host detects that one of these devices now provides Protocol Capabilities Protocol
data (due to a new version of software loaded in the device), then Protocol Capabilities Protocol data shall take
precedence over the data provided in the table below.

The following protocols are omitted from the table because all devices in the table implement them:

A000 | Product Data Protocol
A600 | Date and Time Initialization Protocol
A700 | Position Initialization Protocol

All devices in the table use the D600 data type in conjunction with the A600 protocol; similarly, all devices in the table
use the D700 data type in conjunction with the A700 protocol. The A800/D800 protocol and data type are omitted from
the table because none of the devices in the table implements PVT Data transfer.

Page 64 001-00063-00 Rev. G

Note: all numbers are in decimal format.

Table 39 — Device Protocol Capabilities

ID | Version | Link | Command | Waypoint | Route | Track | Proximity | Almanac
7 All LOO1 | A010 A100 A200 A500
D100 D200 D500
D100
25 | All LOO1 | A010 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
13 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
14 | All L0O01 | A010 A100 A200 A400 A500
D100 D200 D400 D500
D100
15 | All L0O01 | AO10 A100 A200 A400 A500
D151 D200 D151 D500
D151
18 | All LOO1 | A010 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
20 | All L002 | A011 A100 A200 A400 A500
D150 D201 D450 D550
D150
22 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D152 D200 | D300 | D152 D500
D152
23 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
24 | All L0O01 | A010 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
29 | <4.00 LO01 | A010 A100 A200 | A300 | A400 A500
D101 D201 | D300 | D101 D500
D101
29 | >=4.00 | LOO1 | AO10 A100 A200 | A300 | A400 A500
D102 D201 | D300 | D102 D500
D102
31 | Al LO01 | A010 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
33 | All L002 | AD11 A100 A200 A400 A500
D150 D201 D450 D550
D150
34 | All L002 | AD11 A100 A200 A400 A500
D150 D201 D450 D550
D150
35 | All L0O01 | A010 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
36 | <3.00 LO01 | A010 A100 A200 | A300 | A400 A500
D152 D200 | D300 | D152 D500
D152

Page 65 001-00063-00 Rev. G

ID | Version | Link | Command | Waypoint | Route | Track | Proximity | Almanac
36 | >=3.00 | LOO1 | AO10 A100 A200 | A300 A500
D152 D200 | D300 D500
D152
39 | All LO01 | AO10 A100 A200 | A300 A500
D151 D201 | D300 D500
D151
41 | All LOO1 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
42 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D100 D200 | D300 | D400 D500
D100
44 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D101 D201 | D300 | D101 D500
D101
45 | All LO01 | AO10 A100 A200 | A300 A500
D152 D201 | D300 D500
D152
47 | All LO01 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
48 | All LOO1 | AO10 A100 A200 | A300 A500
D154 D201 | D300 D501
D154
49 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D102 D201 | D300 | D102 D501
D102
50 | All LOO1 | AO10 A100 A200 | A300 A500
D152 D201 | D300 D501
D152
52 | All L002 | AD11 A100 A200 A400 A500
D150 D201 D450 D550
D150
53 | All L0O01 | AO10 A100 A200 | A300 A500
D152 D201 | D300 D501
D152
55 | All LO01 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
56 | All LOO1 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
59 | All LOO1 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
61 | All LOO1 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
62 | All LO01 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500
D100
64 | All L002 | AD11 A100 A200 A400 A500
D150 D201 D450 D551
D150

Page 66

001-00063-00 Rev. G

ID | Version | Link | Command | Waypoint | Route | Track | Proximity | Almanac

71 | All LO01 | AO10 A100 A200 | A300 A500
D155 D201 | D300 D501

D155
72 | All LO01 | AO10 A100 A200 | A300 A500
D104 D201 | D300 D501

D104
73 | All LOO1 | AO10 A100 A200 | A300 A500
D103 D201 | D300 D501

D103
74 | All LOO1 | AO10 A100 A200 | A300 A500
D100 D201 | D300 D500

D100
76 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D102 D201 | D300 | D102 D501

D102
77 | <3.01 LO01 | AO10 A100 A200 | A300 | A400 A500
D100 D201 | D300 | D400 D501

D100
77 | >=3.01 | LOO1 | AO10 A100 A200 | A300 | A400 A500
<3.50 D103 D201 | D300 | D403 D501

D103
77 | >=3.50 | LOO1 | AO10 A100 A200 | A300 A500
<361 D103 D201 | D300 D501

D103
77 | >=3.61 | LOO1 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
87 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
88 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D102 D201 | D300 | D102 D501

D102
95 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
96 | All L0O01 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
97 | All LOO1 | AO10 A100 A200 | A300 A500
D103 D201 | D300 D501

D103
98 | All L002 | AO11 A100 A200 A400 A500
D150 D201 D450 D551

D150
100 | All LOO1 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
105 | All LO01 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103
106 | All LO01 | AO10 A100 A200 | A300 | A400 A500
D103 D201 | D300 | D403 D501

D103

Page 67 001-00063-00 Rev. G

ID | Version | Link | Command | Waypoint | Route | Track | Proximity | Almanac
112 | All LO01 | AO10 A100 A200 | A300 A500
D152 D201 | D300 D501
D152

8.3 Frequently Asked Questions
8.3.1 Hexadecimal vs. Decimal Numbers
Q: Why doesn’t the document contain hexadecimal numbers?

A: Having both decimal and hexadecimal numbers introduces dual-maintenance, which is twice the work and prone to
errors. Therefore, we chose to use a single numbering system. We chose decimal because it made the overall document
easier to understand.

8.3.2 Length of Received Data Packet

Q: Should my program look at the length of an incoming packet to detect which waypoint format is being sent from the
device?

A: Prior to having a definitive interface specification, this was probably the best approach. However, now you should
follow the recommendations of the specification and use the Protocol Capabilities Protocol (see section 6.2 on page 9)
or Table 39 on page 65 to explicitly determine the waypoint format. Validating data based on length is undesirable
because: 1) it doesn’t validate the integrity of the data (this is done at the link layer using a checksum); and 2) there is
some possibility that the device will transmit a few extra bytes at the end of the data, which would invalidate an
otherwise valid packet (you can safely ignore the extra bytes).

8.3.3 Waypoint Creation Date
Q: Isn't the “unused” uint32 in waypoint formats really the date of waypoint creation?

A: Only a few of our very early devices used this field for creation date. All other devices treat it as “unused.” Your
program should ignore this field when receiving and set it to zero when transmitting.

8.3.4 Almanac Data Parameters
Q: What is meaning of the almanac data parameters such as wn, toa, af0, etc.?

A: No definitions for these parameters are given other than what is provided in the comments. In most cases, a program
should simply upload and download this data. Otherwise, the comments should suffice for most applications.

8.3.5 Example Code

Q: Where can | find example code (e.g., for converting time and position formats)?

A: We currently don’t have the resources to provide this information.

8.3.6 Sample Data Transfer Dumps

Q: Where can | find some sample data transfer dumps?

A: We currently don’t have the resources to provide this information.

8.3.7 Additional Tables

Q: Why doesn’t the document contain additional tables (e.g., an additional table in Section 8.1 sorted by Product 1D)?

A: We believe the document contains all the necessary information with minimal duplication. Additional sorting may
be performed by the copy/pasting the data into your favorite spreadsheet.

Page 68 001-00063-00 Rev. G

8.3.8 Software Versions
Q: Why doesn’t Table 38 include an indication of software version?
A: We currently don’t have the resources to provide this information. The purpose of the table is to allow you to

determine the Product I1Ds for the devices you wish to support. For example, to support a GPS 12 you must support
Product IDs 77, 87, and 96 and their associated protocols from Table 39.

Page 69 001-00063-00 Rev. G

